Jump to content
Science Forums

Recommended Posts

Posted

___Find attached below, lists of the integers classed by number of divisors. In the post above I attached the list of the class of numbers with 8 divisors. Here I add the classes 6 Divisors, 10 Divisors, & 12 Divisors. Each list is ordered.

___We have discussed whether or not to include a number itself in the sum, & here I do not. I point out again, that the choice is arbitrary. Just so, the column labled "Sigma" is the sum of the proper divisors not including the number itself. The first column is the integer itself, the column labled 'Difference' is 'Sigma Minus Integer', & the colums labled 'Divisors' is the verbose list of proper divisors.

___I further point out that if the Difference is 0 (zero), the number is Perfect, if the Difference is positive the number is abundant, & if the Difference is negative the number is derficient.

  • 1 month later...
Posted

___I noticed Thelonius asked in a new thread about Prime Density, and so I thought to bring this topic back for review. What I describe here is not only Prime Density, but the Density of every class of numbers by their number of divisors.

___As to what use it is, (beyond cryptography) we must further investigate in order to know. What is new & unique here is that beyond Prime & Pseudo-Prime Density, I have described a road map for extending the investigation beyond what others have.

  • 4 weeks later...
Posted

___I have packed away my work on this topic; however it occured to me that since the density of primes study has a fair amount of data, & since the classes I outline here, ie. classifying all integers by their number of divisors, must use the primes in their members, the comparison of prime density/class density may have some interesting pattern.

Posted

___I noticed several Google spyders on this thread & the Strange Numbers thread as well several times & I encourage anyone furthering this work or questioning it to post.

___One particular aspect of the different statistical distributions here I may have noted early on, has occupied my mind lately. As we invoked prime density & its relation & inclusion in the larger set of distributions by class of number of divisors, we implied but did not explicitly state that this density is steadily decreasing.

___This is not the case for all the classes however, & in fact some class densitys appear to oscillate up & down in a manner similar to an attractor. There is much exploration here required beyond my computer capabilities & I invite anyone's participation. :friday:

  • 4 weeks later...
Posted

___I have the promised data sheet now in the Hypography Science Gallery:

http://hypography.com/gallery/showimage.php?i=283

 

___I may have said it went through 13 million, however on finding the sheet I found it through 10 million. No matter. If you look at the right hand column of the sheet, you see arrows, some pointing up, some down, & some both. As I have discussed in this thread, those wavering up & down have the quality of Strange Attractors; on the sheet these attractors occur for the classes 6 pairs of divisors, 7 pairs, & 27 pairs.

___Now on further examination, I see some blanks in the arrow column, but on the whole, only a few densities steadily increase over the range of the data, eg. class of 15 pairs, & class of 23 pairs.

___The experiment continues then, mistakes & all. :hyper:

  • 1 month later...
Posted
… how weird is it that in the first 15 million+ integers, only 1 has 92 divisors, none have 94 divisors, & then all of a sudden 110,229 have 96 divisors!

One of the interesting questions raised these brute-force generated tables has the form “for the first X integers, why do none have Y divisors?”

 

Fortunately, some non-computer supported reasoning can answer this one.

An integer N is uniquely defined by its prime factorization, that is,

N =Product(Prime(i)^A(i)),

where Prime(i) is the i-th prime, and A(i) is its exponent in the prime factorization of N. E.g: for N=20, A={2,0,1}, 28= 2^2 * 3^0 * 5^1

The number of integer divisior of N,

Divisors(N) = Product(A(i)+1),

where A is as above. E.g: Divisors(20) = (2+1)*(0+1)*(1+1) = 6, 20={1*20, 2*10, 4*5, 5*4, 10*2, 20*1}.

 

This can be applied to calculate the minimum integer that has any given number of divisors. Here’s the calculation for Divisors 1-12

Divs / A / Min N

1 / / 1

2 / 1 / 2

3 / 2 / 4

4 / 1,1 / 6

5 / 4 / 16

6 / 2,1 / 12

7 / 6 / 64

8 / 1,1,1 / 30

9 / 2,2 / 36

10 / 4,1 / 48

11 / 10 / 1024

12 / 2,1,1 / 60

 

So, for the first 100 integers, none will have 7 or 11 divisors, but some will have 12 divisors.

 

For 46-48 divisors, we have

Divs / A / Min N

46 / 22,1 / 12,582,912

47 / 46 / 70,368,744,177,664

48 / 2,1,1,1,1 / 4,620

 

This agrees with the observation that, for the first 15,000,000 integers, there is only 1 with 46 divisors, none with 47, but many with 48.

Posted

___How beautiful is that! Free at last! Or am I? You say "one of the intersting questions raised". That anyone finds it interesting at all makes all the brute force worth it. Thanks CraigD for you insighful & succinct analysis! Now where did I put those Strange Numbers? :)

 

 

___I see a discrepency in this list:

 

Divs / A / Min N

1 / / 1

2 / 1 / 2

3 / 2 / 4

4 / 1,1 / 6

5 / 4 / 16

6 / 2,1 / 12

7 / 6 / 64

8 / 1,1,1 / 30

9 / 2,2 / 36

10 / 4,1 / 48

11 / 10 / 1024

12 / 2,1,1 / 60

___24 is the least integer with 8 divisors; 8 / 3,1 / 24 ?

 

This may now take us back over to Strange Numbers as 24 & 30 are the 1st & 2nd elements in the set of Strange Numbers. Somewhere we noticed something about 54 (maybe the Katabatak thread), anyway 54 is something of a strange Strange number as it has the perfect 6 paired with a composite (9) rather than the usual perfect 6 & a prime.

Posted
I see a discrepency in this list …

Divs / A / Min N …

8 / 1,1,1 / 30 …

___24 is the least integer with 8 divisors; 8 / 3,1 / 24 …

You’re correct. 30 has 8 Divs, but isn’t the smallest integer that does.

 

I generated the short table in my 7/10/05 post by hand, using (faulty!) intuition to find the A that gives the smallest N. Since then, I’ve written a program to generate the list. Though it’s slightly complicated, it’s non-itterative – that is, it finds the A for the smallest N other than by exhaustively trying every possibility.

M code:

k r X(1),!,X(2),!,X(3),!,X(4),!,X(5),!,X(6) s P=2,P(1)=2,P(2)=3 x X(1)

f n=1:1 x X(2),X(4) w n," " x X(6) w " ",m,! ;-1

n (X,A,n,P) k A s q=n f i=1:1 q:q=1 x:'$d(P(i)) X(3) f q:q#P(i) s A(i)=$g(A(i))+1,q=qP(i) ;factor n into A(), grow P() -2

n (P) f i=P(P)+2:2 x "f j=2:1 s:j*j>i j=0 q:'j q:i#j=0" i 'j s P=P+1,P(P)=i q ;grow P() -3

n (X,B,A,P) k B s j="" f s j=$o(A(j),-1) q:'j s y=P(j) f i=1:1:A(j) x X(5) s B(k)=$g(B(k))+1*y-1 ;find B() given A() ;-4

n (X,k,B,y,P) s m=0 f i=1:1 x X(3):'$d(P(i)),X(3):'$d(P(i+1)) s n=P(i)**($g(B(i))+1*(y-1)) s:n<m!'m m=n,k=i q:P(i+1)**(y-1)'<m ;-5

n (B,P,m) s m=1,d="" f i=1:1:$o(B(""),-1) s m=P(i)**B(i)*m w d,B(i) s d="," ;expand factors B() into m -6

Since this is using the interpreter’s intrinsic math functions, it’s only able to generate up to Divs 306, and displays some imprecise Ns for large values. Output is at the end of this post.

 

Having answered the “why are there gaps” question, I’m less interested now in this line of inquiry.

 

The most beautiful question that I think can come out of the “Statisitical View” investigation is a generalized version of the one prompting the Prime Number Theorem – “How many prime numbers less than N are there?”. The famous answer – Pi(N) ~ N/Log(N) goes back a couple of centuries, has some famous proofs, and improvements. A more general question, basically the one this thread is asking, is “How many numbers less than N with X factors are there. I suspect that a function related to and as elegant as the PNT answers this question.

 

PS: Min N for number of divisors 1-306 (some large N’s approximate)

Divs / A / Min N

1 / / 1

2 / 1 / 2

3 / 2 / 4

4 / 1,1 / 6

5 / 4 / 16

6 / 2,1 / 12

7 / 6 / 64

8 / 3,1 / 24

9 / 2,2 / 36

10 / 4,1 / 48

11 / 10 / 1024

12 / 2,1,1 / 60

13 / 12 / 4096

14 / 6,1 / 192

15 / 4,2 / 144

16 / 3,1,1 / 120

17 / 16 / 65536

18 / 2,2,1 / 180

19 / 18 / 262144

20 / 4,1,1 / 240

21 / 6,2 / 576

22 / 10,1 / 3072

23 / 22 / 4194304

24 / 2,1,1,1 / 420

25 / 4,4 / 1296

26 / 12,1 / 12288

27 / 2,2,2 / 900

28 / 6,1,1 / 960

29 / 28 / 268435456

30 / 4,2,1 / 720

31 / 30 / 1073741824

32 / 3,1,1,1 / 840

33 / 10,2 / 9216

34 / 16,1 / 196608

35 / 6,4 / 5184

36 / 2,2,1,1 / 1260

37 / 36 / 68719476736

38 / 18,1 / 786432

39 / 12,2 / 36864

40 / 4,1,1,1 / 1680

41 / 40 / 1099511627776

42 / 6,2,1 / 2880

43 / 42 / 4398046511104

44 / 10,1,1 / 15360

45 / 4,2,2 / 3600

46 / 22,1 / 12582912

47 / 46 / 70368744177664

48 / 5,1,1,1 / 3360

49 / 6,6 / 46656

50 / 4,4,1 / 6480

51 / 16,2 / 589824

52 / 12,1,1 / 61440

53 / 52 / 4503599627370496

54 / 2,2,2,1 / 6300

55 / 10,4 / 82944

56 / 6,1,1,1 / 6720

57 / 18,2 / 2359296

58 / 28,1 / 805306368

59 / 58 / 288230376151711744

60 / 4,2,1,1 / 5040

61 / 60 / 1152921504606846976

62 / 30,1 / 3221225472

63 / 6,2,2 / 14400

64 / 3,3,1,1 / 7560

65 / 12,4 / 331776

66 / 10,2,1 / 46080

67 / 66 / 73786976294838206480

68 / 16,1,1 / 983040

69 / 22,2 / 37748736

70 / 6,4,1 / 25920

71 / 70 / 1180591620717411304000

72 / 5,2,1,1 / 10080

73 / 72 / 4722366482869645216000

74 / 36,1 / 206158430208

75 / 4,4,2 / 32400

76 / 18,1,1 / 3932160

77 / 10,6 / 746496

78 / 12,2,1 / 184320

79 / 78 / 302231454903657293800000

80 / 4,3,1,1 / 15120

81 / 2,2,2,2 / 44100

82 / 40,1 / 3298534883328

83 / 82 / 4835703278458516700000000

84 / 6,2,1,1 / 20160

85 / 16,4 / 5308416

86 / 42,1 / 13194139533312

87 / 28,2 / 2415919104

88 / 10,1,1,1 / 107520

89 / 88 / 309485009821345068800000000

90 / 4,2,2,1 / 25200

91 / 12,6 / 2985984

92 / 22,1,1 / 62914560

93 / 30,2 / 9663676416

94 / 46,1 / 211106232532992

95 / 18,4 / 21233664

96 / 5,3,1,1 / 30240

97 / 96 / 79228162514264337600000000000

98 / 6,6,1 / 233280

99 / 10,2,2 / 230400

100 / 4,4,1,1 / 45360

101 / 100 / 1267650600228229402000000000000

102 / 16,2,1 / 2949120

103 / 102 / 5070602400912917608000000000000

104 / 12,1,1,1 / 430080

105 / 6,4,2 / 129600

106 / 52,1 / 13510798882111488

107 / 106 / 81129638414606681760000000000000

108 / 5,2,2,1 / 50400

109 / 108 / 324518553658426727000000000000000

110 / 10,4,1 / 414720

111 / 36,2 / 618475290624

112 / 6,3,1,1 / 60480

113 / 112 / 5192296858534827632000000000000000

114 / 18,2,1 / 11796480

115 / 22,4 / 339738624

116 / 28,1,1 / 4026531840

117 / 12,2,2 / 921600

118 / 58,1 / 864691128455135232

119 / 16,6 / 47775744

120 / 4,2,1,1,1 / 55440

121 / 10,10 / 60466176

122 / 60,1 / 3458764513820540928

123 / 40,2 / 9895604649984

124 / 30,1,1 / 16106127360

125 / 4,4,4 / 810000

126 / 6,2,2,1 / 100800

127 / 126 / 85070591730234615920000000000000000000

128 / 3,3,1,1,1 / 83160

129 / 42,2 / 39582418599936

130 / 12,4,1 / 1658880

131 / 130 / 1361129467683753854000000000000000000000

132 / 10,2,1,1 / 322560

133 / 18,6 / 191102976

134 / 66,1 / 221360928884514619400

135 / 4,2,2,2 / 176400

136 / 16,1,1,1 / 6881280

137 / 136 / 87112285931760246640000000000000000000000

138 / 22,2,1 / 188743680

139 / 138 / 348449143727040986600000000000000000000000

140 / 6,4,1,1 / 181440

141 / 46,2 / 633318697598976

142 / 70,1 / 3541774862152233912000

143 / 12,10 / 241864704

144 / 5,2,1,1,1 / 110880

145 / 28,4 / 21743271936

146 / 72,1 / 14167099448608935650000

147 / 6,6,2 / 1166400

148 / 36,1,1 / 1030792151040

149 / 148 / 356811923176489970200000000000000000000000000

150 / 4,4,2,1 / 226800

151 / 150 / 1427247692705959881000000000000000000000000000

152 / 18,1,1,1 / 27525120

153 / 16,2,2 / 14745600

154 / 10,6,1 / 3732480

155 / 30,4 / 86973087744

156 / 12,2,1,1 / 1290240

157 / 156 / 91343852333181432400000000000000000000000000000

158 / 78,1 / 906694364710971881400000

159 / 52,2 / 40532396646334464

160 / 4,3,1,1,1 / 166320

161 / 22,6 / 3057647616

162 / 5,2,2,2 / 352800

163 / 162 / 5846006549323611672000000000000000000000000000000

164 / 40,1,1 / 16492674416640

165 / 10,4,2 / 2073600

166 / 82,1 / 14507109835375550100000000

167 / 166 / 93536104789177786700000000000000000000000000000000

168 / 6,2,1,1,1 / 221760

169 / 12,12 / 2176782336

170 / 16,4,1 / 26542080

171 / 18,2,2 / 58982400

172 / 42,1,1 / 65970697666560

173 / 172 / 5986310706507378348000000000000000000000000000000000

174 / 28,2,1 / 12079595520

175 / 6,4,4 / 3240000

176 / 10,3,1,1 / 967680

177 / 58,2 / 2594073385365405696

178 / 88,1 / 928455029464035206000000000

179 / 178 / 383123885216472214400000000000000000000000000000000000

180 / 4,2,2,1,1 / 277200

181 / 180 / 1532495540865888858000000000000000000000000000000000000

182 / 12,6,1 / 14929920

183 / 60,2 / 10376293541461622780

184 / 22,1,1,1 / 440401920

185 / 36,4 / 5566277615616

186 / 30,2,1 / 48318382080

187 / 16,10 / 3869835264

188 / 46,1,1 / 1055531162664960

189 / 6,2,2,2 / 705600

190 / 18,4,1 / 106168320

191 / 190 / 1569275433846670190000000000000000000000000000000000000000

192 / 5,3,1,1,1 / 332640

193 / 192 / 6277101735386680760000000000000000000000000000000000000000

194 / 96,1 / 237684487542793012800000000000

195 / 12,4,2 / 8294400

196 / 6,6,1,1 / 1632960

197 / 196 / 100433627766186892200000000000000000000000000000000000000000

198 / 10,2,2,1 / 1612800

199 / 198 / 401734511064747568800000000000000000000000000000000000000000

200 / 4,4,1,1,1 / 498960

201 / 66,2 / 664082786653543858300

202 / 100,1 / 3802951800684688206000000000000

203 / 28,6 / 195689447424

204 / 16,2,1,1 / 20643840

205 / 40,4 / 89060441849856

206 / 102,1 / 15211807202738752820000000000000

207 / 22,2,2 / 943718400

208 / 12,3,1,1 / 3870720

209 / 18,10 / 15479341056

210 / 6,4,2,1 / 907200

211 / 210 / 1645504557321206042000000000000000000000000000000000000000000000

212 / 52,1,1 / 67553994410557440

213 / 70,2 / 10625324586456701740000

214 / 106,1 / 243388915243820045300000000000000

215 / 42,4 / 356241767399424

216 / 5,2,2,1,1 / 554400

217 / 30,6 / 782757789696

218 / 108,1 / 973555660975280181000000000000000

219 / 72,2 / 42501298345826806940000

220 / 10,4,1,1 / 2903040

221 / 16,12 / 34828517376

222 / 36,2,1 / 3092376453120

223 / 222 / 6739986666787659948000000000000000000000000000000000000000000000000

224 / 6,3,1,1,1 / 665280

225 / 4,4,2,2 / 1587600

226 / 112,1 / 15576890575604482900000000000000000

227 / 226 / 10783978666860255920000000000000000000000000000000000000000000000000

0

228 / 18,2,1,1 / 82575360

229 / 228 / 43135914667441023680000000000000000000000000000000000000000000000000

0

230 / 22,4,1 / 1698693120

231 / 10,6,2 / 18662400

232 / 28,1,1,1 / 28185722880

233 / 232 / 69017463467905637880000000000000000000000000000000000000000000000000

00

234 / 12,2,2,1 / 6451200

235 / 46,4 / 5699868278390784

236 / 58,1,1 / 4323455642275676160

237 / 78,2 / 2720083094132915644000000

238 / 16,6,1 / 238878720

239 / 238 / 44171176619459608240000000000000000000000000000000000000000000000000

0000

240 / 4,2,1,1,1,1 / 720720

241 / 240 / 17668470647783843300000000000000000000000000000000000000000000000000

00000

242 / 10,10,1 / 302330880

243 / 8,2,2,2 / 2822400

244 / 60,1,1 / 17293822569102704640

245 / 6,6,4 / 29160000

246 / 40,2,1 / 49478023249920

247 / 18,12 / 139314069504

248 / 30,1,1,1 / 112742891520

249 / 82,2 / 43521329506126650300000000

250 / 4,4,4,1 / 5670000

251 / 250 / 18092513943330655540000000000000000000000000000000000000000000000000

00000000

252 / 6,2,2,1,1 / 1108800

253 / 22,10 / 247669456896

254 / 126,1 / 255211775190703847800000000000000000000

255 / 16,4,2 / 132710400

256 / 3,3,1,1,1,1 / 1081080

257 / 256 / 11579208923731619540000000000000000000000000000000000000000000000000

0000000000

258 / 42,2,1 / 197912092999680

259 / 36,6 / 50096498540544

260 / 12,4,1,1 / 11612160

261 / 28,2,2 / 60397977600

262 / 130,1 / 4083388403051261562000000000000000000000

263 / 262 / 74106937111882365040000000000000000000000000000000000000000000000000

00000000000

264 / 10,2,1,1,1 / 3548160

265 / 52,4 / 364791569817010176

266 / 18,6,1 / 955514880

267 / 88,2 / 2785365088392105619000000000

268 / 66,1,1 / 1106804644422573097000

269 / 268 / 47428439751604713640000000000000000000000000000000000000000000000000

0000000000000

270 / 4,2,2,2,1 / 1940400

271 / 270 / 18971375900641885460000000000000000000000000000000000000000000000000

00000000000000

272 / 16,3,1,1 / 61931520

273 / 12,6,2 / 74649600

274 / 136,1 / 261336857795280739900000000000000000000000

275 / 10,4,4 / 51840000

276 / 22,2,1,1 / 1321205760

277 / 276 / 12141680576410806700000000000000000000000000000000000000000000000000

0000000000000000

278 / 138,1 / 1045347431181122960000000000000000000000000

279 / 30,2,2 / 241591910400

280 / 6,4,1,1,1 / 1995840

281 / 280 / 19426688922257290720000000000000000000000000000000000000000000000000

00000000000000000

282 / 46,2,1 / 3166593487994880

283 / 282 / 77706755689029162880000000000000000000000000000000000000000000000000

00000000000000000

284 / 70,1,1 / 17708874310761169560000

285 / 18,4,2 / 530841600

286 / 12,10,1 / 1209323520

287 / 40,6 / 801543976648704

288 / 5,2,1,1,1,1 / 1441440

289 / 16,16 / 2821109907456

290 / 28,4,1 / 108716359680

291 / 96,2 / 713053462628379038400000000000

292 / 72,1,1 / 70835497243044678250000

293 / 292 / 79571717825565862800000000000000000000000000000000000000000000000000

00000000000000000000

294 / 6,6,2,1 / 8164800

295 / 58,4 / 23346660468288651260

296 / 36,1,1,1 / 7215545057280

297 / 10,2,2,2 / 11289600

298 / 148,1 / 1070435769529469911000000000000000000000000000

299 / 22,12 / 2229025112064

300 / 4,4,2,1,1 / 2494800

301 / 42,6 / 3206175906594816

302 / 150,1 / 4281743078117879643000000000000000000000000000

303 / 100,2 / 11408855402054064620000000000000

304 / 18,3,1,1 / 247726080

305 / 60,4 / 93386641873154605100

306 / 16,2,2,1 / 103219200

Posted

)))Ooohhhh...I love a verbose list!

___I agree that with the mystery lightened, my interest wains as well. After the first short list, I was so satisfied that I threw out 30 pages of notes I've kept for qite some years. :eek: I did retrieve them when I found the discrepency in review; maybe now I'll just toss half out in view of the new development. :eek:

___Allowing this thread to langusih now, it's on to the Strange Numbers to try & put them to rest as well. Great work & participation CraigD; Thanks. :eek:

  • 3 years later...
Posted

:gift: :wave2: Inasmuch as the topic of Strange Numbers has gained some new interest and activity in that thread, I decided to bump this thread to put the Strange Numbers in the context in which I found themI found them. Enjoy. :) :hihi: :friday:

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...