CraigD Posted February 24, 2008 Report Posted February 24, 2008 Keith numbers are integers that appear in an n-Fibonacci sequence beginning with the digits of the base ten numeration of the number, where n is the number of digits in the numeral. For example, the 3-fibonachi sequence 7,4,2,13,19,34,66,119,219,404,742, ... has at its 11th term the number 742, matching its first 3 terms, 7,4,2. An interesting thing about Keith numbers is that they are rare. For the range 10 to [math]10^{26}[/math], it’s been exhaustively shown that there are only 84 of them. The largest known Keith number is currently 70267375510207885242218837404 (29 digits). There’s no efficient technique for generating Keith numbers – all known techniques involves exhaustively testing large collections of numbers. Interesting unproven conjectures about Keith numbers are that there are infinitely many of them, or the negation, that there is a greatest Keith number. Because Keith numbers depend on the choice of numeral base (usually 10), curiosity drove me to examine them in bases other than 10. For example, here are the Keith numbers under [math]1000_{10}[/math] in bases 2 to 16:Base: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 10 . . . . . . . . . . . . . . 2 3 11 10 . . . . . . . . . . . . . 3 4 100 . . . . . . . . . . . . . . 4 5 . 12 11 10 . . . . . . . . . . . 5 6 . 20 . . . . . . . . . . . . . 6 7 . 21 13 . . . . . . . . . . . . 7 8 1000 . . . 12 11 10 . . . . . . . . 8 9 . . . 14 . . . . . . . . . . . 9 10 . . 22 20 . . . . . . . . . . . 10 11 . . . 21 15 . 13 . . . . . . . . 11 13 . . . 23 . 16 . . . 12 11 10 . . . 13 14 . . . . . . . . 14 . . . . . . 14 15 . . 33 30 . . 17 . . . . . . . . 15 16 10000 . . . 24 22 20 . . . . . . . . 16 17 . . . . . . . 18 . . 15 . . . . 17 18 . . 102 . . . . . . . . . . 13 . 18 19 . . . . . 25 . . 19 . . . . . . 19 20 . . . 40 . . . . . . . . 16 . . 20 21 . . . . . . . 23 . 1a . . . . . 21 22 . . . 42 . . 26 . . . . . . . . 22 23 . . . . . . . . . . 1b . . . 17 23 24 . . . . . 33 30 . . . . . . . . 24 25 . . . . . . . 27 . . . 1c . . . 25 26 . . . . . . . . . 24 22 20 . . . 26 27 . . . . 43 . . . . . . . 1d . . 27 28 . . . . . . . . 28 . . . . . . 28 29 . . 131 . . . . . . . . . 21 1e . 29 31 . . . 111 . . . . . 29 . 25 . . 1f 31 32 100000 . . . . 44 40 . . . . . . . . 32 34 . . . . . . . . . . 2a . . . . 34 36 . . . . . . . . . . . . . 26 . 36 37 . . . . 101 . 45 . . . 31 2b . . . 37 39 . . . . . . . . . 36 33 30 . . . 39 40 . . . 130 . 55 50 . . . . . 2c . . 40 42 . . . . . . . 46 . . . . . . . 42 43 . . . 133 . . . . . . . . . 2d . 43 44 . . . . 112 . . . . . . . . . . 44 45 . . . . . . . . . 41 . . . . . 45 46 . . . . . . . . . . . . . . 2e 46 47 . . 233 . . . . . 47 . . . . . . 47 48 . . . . . 66 60 . . . . . . . . 48 50 . . . . . . . . . . . . . . 32 50 52 . . . . . . . . . 48 44 40 . . . 52 53 . . . 203 . . . . . . . . . . . 53 54 . . . . . . . . . . . . . 39 . 54 56 . . . . . . 70 . . . . . . . . 56 57 . 2010 . . . 111 . . . . 49 . . . . 57 58 . . . . . . . . . . . . 42 . . 58 59 . . . . . . 73 . . . . . . . . 59 61 . . . . . . . . 61 . . . . . . 61 62 . . . 222 . . . . . . . 4a . . . 62 64 1000000 . . . . . . . . . . . . . . 64 65 . . . . . . . . . 5a 55 50 . . . 65 67 . . . . . . . 74 . . . . 4b . . 67 71 . . . 241 . . . . . . . . . . . 71 72 . . . . . . . . . . . . . 4c . 72 74 . . . . 202 . . . . . 62 . . . . 74 75 . . . . . . . . 75 . . . . . . 75 77 . . . . . . . . . . . . . . 4d 77 78 . . . . . . . . . . 66 60 . . . 78 81 . . . . . . . 100 . . . . . . . 81 83 . . . . . . . . . 76 . . . . . 83 84 . . . 314 . . . . . . . . . . . 84 87 . . . . . . . . . . . . 63 . . 87 88 . . . . 224 . . . . . . . . . . 88 90 . . . . . . . . . 82 . . . . . 90 91 . . . . . . . . . . 77 70 . . . 91 92 . . . . . . 134 . . . . . . . . 92 93 . . . 333 . . . . . . . . . . . 93 96 . . . . . . . 116 . . . . . . . 96 99 . . . . . . . . . . . 78 . . . 99 100 . . . . . . . . . . . . . . 64 100 101 . . . . . . . 122 . . . . . . . 101 102 . 10210 . . . . . . . . . . . . . 102 104 . . . . . . . . . . 88 80 . . . 104 107 . . . . . . . . . . . . 79 . . 107 111 . . . . 303 . . . . . 93 . . . . 111 113 . . 1301 . . . . . . . . . . . . 113 114 . . . . . 222 . . . . . . . . . 114 115 . . . . . . . . . . . . . 7a . 115 116 . . . . . . . . . . . . 84 . . 116 117 . . . . . . . . . . 99 90 . . . 117 123 . . . . . . 173 . . . . . . . 7b 123 124 . . . 444 . . . . . . . . . . . 124 125 . . . . . 236 . . . . . . . . . 125 127 . 11201 . . . . . . . . . . . . . 127 128 10000000 . . . . . . . . . . . . . . 128 130 . . . . . . . . . . aa a0 . . . 130 143 10001111 . . . . . . . . . bb b0 . . . 143 145 . . . . . 265 . . . . . . a5 . . 145 148 . . . . 404 . . . . . . . . . . 148 149 . . . . . . . 175 . . . . . . . 149 150 . . . . . . . . . . . . . . 96 150 151 . . . . . . . . . . . . . a1 . 151 154 . . . 1104 . . . . . . . . . . . 154 156 . . . . . . . . . . . c0 . . . 156 161 . . . . . . . . . . . c5 . . . 161 162 . . . . . . . 200 . . . . . . . 162 163 . . 2203 . . . . . . . . . . . . 163 171 . . . . . 333 . . . . . . . . . 171 173 . . . . . . . 212 . . 125 . . . . 173 174 . . . . . . . . . . . . c6 . . 174 185 . . . . 505 . . . . . . . . . . 185 187 . . . . . . . . . . . . . c7 . 187 197 . . . . . . . . 197 . . . . . . 197 200 . . . . . . 310 . . . . . 104 . c8 200 202 . . . . . . . 244 . . . . . . . 202 206 . 21122 . . . . . . . . . . . . . 206 217 . 22001 . . . . . . . . . . . . . 217 221 . . . 1341 . . . . . . . . . . . 221 228 . . . . . 444 . . . . . . . . . 228 243 . . . . . . . 300 . . . . . . . 243 249 . . . . . . . . . . . . . 119 . 249 250 . . . . . . . . . . . . . . fa 250 251 . . . . . . 373 . . . . . . . . 251 256 100000000 . . . . . . . . . . . . . . 256 257 . . . . . . 401 . . . . . . . . 257 262 . . . . . . . . . 219 . . . . . 262 269 . . 10031 . . . . . . . . . . . . 269 274 . . . . . . . . . . . . . . 112 274 285 100011101 . . . . 555 . . . . . . . . . 285 303 . . . . . . . 366 . . . . . . . 303 305 . . . . . . . . . . 215 . . . . 305 324 . . . . . . . 400 . . . . . . . 324 329 . . . . . 650 . . . . . . . . . 329 342 . . . . . 666 . . . . . . . . . 342 346 . . . . . . . 424 . . 24a . . . . 346 400 . . . . . . 620 . . . . . 208 . . 400 401 . . . . . . . . . . . . . . 191 401 404 . . . . . . . 488 . . . . . . . 404 405 . . . . . . . 500 . . . . . . . 405 409 . . . . 1521 . . . . . . . . . 199 409 457 . . . . . . 711 . . . . . . . . 457 483 . . . 3413 . . . . . . . . . . . 483 486 . . . . . . . 600 . . . . . . . 486 512 1000000000 . . . . . . . . . . . . . . 512 519 . . . . . . . 636 . . . . . . . 519 524 . . . . . . . . . . . 314 . . . 524 526 . . . . 2234 . . . . . . . . . . 526 528 . . . . . . . . . . . . . . 210 528 529 . . . . . . . . . 441 . . . . . 529 542 . . . . . . . . . . . 329 . . . 542 545 . . . . . . . . . 456 . . . . . 545 548 . . . . . . . . . . . . . . 224 548 567 . . . . . . . 700 . . . . . . . 567 569 1000111001 . . . . . . . . . . . . . . 569 581 . . . . . . . . . . 405 . . . . 581 589 . . . . . 1501 . . . . . . . . . 589 600 . . . . . . . . . . . . 30c . . 600 610 . . . . . . . . . . 42a . . . . 610 647 . . . . . . . . . . . . 343 . . 647 648 . . . . . . . 800 . . . . . . . 648 677 . 221002 . . . . . . . . . . . . . 677 683 1010101011 . . . . . . . . . . . . . . 683 692 . . . . . . . 848 . . . . . . . 692 718 . . . . . . . . . . . . . 32d . 718 732 . . . . . . . 1003 . . . . . . . 732 742 . . . . . . . . 742 . . . . . . 742 805 . 1002211 . . . . . . . . . . . . . 805 822 . . . . . . . . . . . . . . 336 822 840 . 1011010 . . . . . . . . . . . . . 840 857 . . . . . . . 1152 . . . . . . . 857 893 . . . . . . 1575 . . . . . . . . 893 928 . . . . . . . . . . 654 . . . . 928 939 . . . . . . . . . . . 573 . . . 939 Base: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Count(<1000):14 12 10 20 13 18 20 25 8 13 24 21 15 11 16Although there are fewer Keith numbers < 1000 in base 10 than the other first 15 bases (8 vs. the max of 25 for base 9), this doesn’t appear to be a trend when more numbers are considered. When Keith numbers < 100000 are counted for bases 2 through 32, 100, and 1000, 24 are found for base 10, vs. a minimum of 16 in base 4 and a maximum of 46 in base 21. One of the first remarkable observations to come from my foray into Keith numbers in different bases is that, for base 2, every power of 2 is a Keith number (but every Keith number is not a power of 2). A proof of this is trivial (and left as an exercise for the reader ;)), so the conjecture that there are infinitely many Keith numbers is proven true in base 2. Nothing similarly obvious jumps out at me for other bases. However, I wonder if this obvious, trivial proof holds an intuitive gateway to a significant one involving the infinite number conjecture in bases greater than 2? Anybody been down this road? If not, consider it new food for thought for discrete math fans. :) Quote
Turtle Posted February 27, 2008 Report Posted February 27, 2008 Keith numbers are integers that appear in an n-Fibonacci sequence beginning with the digits of the base ten numeration of the number, where n is the number of digits in the numeral. For example, the 3-fibonachi sequence 7,4,2,13,19,34,66,119,219,404,742, ... has at its 11th term the number 731, matching its first 3 terms, 7,3,1. Mmmmm...It looks to me like the 11th term is 742 in the example, and that the first 3 terms are 7, 4, 2? What am I missing? :phones: Anybody been down this road? If not, consider it new food for thought for discrete math fans. :cheer: Is it a yellow brick road? Mmmmm....tasty musings. I'm going to have to chew the gristly list a bit as I'm curious what intersecton with other familiar sets so succinctly served Keith numbers may enjoy. ...:phones: Quote
Turtle Posted February 27, 2008 Report Posted February 27, 2008 Because Keith numbers depend on the choice of numeral base (usually 10), curiosity drove me to examine them in bases other than 10. For example, here are the Keith numbers under [math]1000_{10}[/math] in bases 2 to 16:Base: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 10 . . . . . . . . . . . . . . 2 3 11 10 . . . . . . . . . . . . . 3 4 100 . . . . . . . . . . . . . . 4 5 . 12 11 10 . . . . . . . . . . . 5 6 . 20 . . . . . . . . . . . . . 6 7 . 21 13 . . . . . . . . . . . . 7 8 1000 . . . 12 11 10 . . . . . . . . 8 9 . . . 14 . . . . . . . . . . . 9 10 . . 22 20 . . . . . . . . . . . 10 11 . . . 21 15 . 13 . . . . . . . . 11 13 . . . 23 . 16 . . . 12 11 10 . . . 13 14 . . . . . . . . 14 . . . . . . 14 15 . . 33 30 . . 17 . . . . . . . . 15 16 10000 . . . 24 22 20 . . . . . . . . 16 17 . . . . . . . 18 . . 15 . . . . 17 18 . . 102 . . . . . . . . . . 13 . 18 19 . . . . . 25 . . 19 . . . . . . 19 20 . . . 40 . . . . . . . . 16 . . 20 21 . . . . . . . 23 . 1a . . . . . 21 22 . . . 42 . . 26 . . . . . . . . 22 23 . . . . . . . . . . 1b . . . 17 23 24 . . . . . 33 30 . . . . . . . . 24 25 . . . . . . . 27 . . . 1c . . . 25 26 . . . . . . . . . 24 22 20 . . . 26 27 . . . . 43 . . . . . . . 1d . . 27 28 . . . . . . . . 28 . . . . . . 28 29 . . 131 . . . . . . . . . 21 1e . 29 31 . . . 111 . . . . . 29 . 25 . . 1f 31 32 100000 . . . . 44 40 . . . . . . . . 32 34 . . . . . . . . . . 2a . . . . 34 36 . . . . . . . . . . . . . 26 . 36 37 . . . . 101 . 45 . . . 31 2b . . . 37 39 . . . . . . . . . 36 33 30 . . . 39 40 . . . 130 . 55 50 . . . . . 2c . . 40 42 . . . . . . . 46 . . . . . . . 42 43 . . . 133 . . . . . . . . . 2d . 43 44 . . . . 112 . . . . . . . . . . 44 45 . . . . . . . . . 41 . . . . . 45 46 . . . . . . . . . . . . . . 2e 46 47 . . 233 . . . . . 47 . . . . . . 47 48 . . . . . 66 60 . . . . . . . . 48 50 . . . . . . . . . . . . . . 32 50 52 . . . . . . . . . 48 44 40 . . . 52 53 . . . 203 . . . . . . . . . . . 53 54 . . . . . . . . . . . . . 39 . 54 56 . . . . . . 70 . . . . . . . . 56 57 . 2010 . . . 111 . . . . 49 . . . . 57 58 . . . . . . . . . . . . 42 . . 58 59 . . . . . . 73 . . . . . . . . 59 61 . . . . . . . . 61 . . . . . . 61 62 . . . 222 . . . . . . . 4a . . . 62 64 1000000 . . . . . . . . . . . . . . 64 65 . . . . . . . . . 5a 55 50 . . . 65 67 . . . . . . . 74 . . . . 4b . . 67 71 . . . 241 . . . . . . . . . . . 71 72 . . . . . . . . . . . . . 4c . 72 74 . . . . 202 . . . . . 62 . . . . 74 75 . . . . . . . . 75 . . . . . . 75 77 . . . . . . . . . . . . . . 4d 77 78 . . . . . . . . . . 66 60 . . . 78 81 . . . . . . . 100 . . . . . . . 81 83 . . . . . . . . . 76 . . . . . 83 84 . . . 314 . . . . . . . . . . . 84 87 . . . . . . . . . . . . 63 . . 87 88 . . . . 224 . . . . . . . . . . 88 90 . . . . . . . . . 82 . . . . . 90 91 . . . . . . . . . . 77 70 . . . 91 92 . . . . . . 134 . . . . . . . . 92 93 . . . 333 . . . . . . . . . . . 93 96 . . . . . . . 116 . . . . . . . 96 99 . . . . . . . . . . . 78 . . . 99 100 . . . . . . . . . . . . . . 64 100 101 . . . . . . . 122 . . . . . . . 101 102 . 10210 . . . . . . . . . . . . . 102 104 . . . . . . . . . . 88 80 . . . 104 107 . . . . . . . . . . . . 79 . . 107 111 . . . . 303 . . . . . 93 . . . . 111 113 . . 1301 . . . . . . . . . . . . 113 114 . . . . . 222 . . . . . . . . . 114 115 . . . . . . . . . . . . . 7a . 115 116 . . . . . . . . . . . . 84 . . 116 117 . . . . . . . . . . 99 90 . . . 117 123 . . . . . . 173 . . . . . . . 7b 123 124 . . . 444 . . . . . . . . . . . 124 125 . . . . . 236 . . . . . . . . . 125 127 . 11201 . . . . . . . . . . . . . 127 128 10000000 . . . . . . . . . . . . . . 128 130 . . . . . . . . . . aa a0 . . . 130 143 10001111 . . . . . . . . . bb b0 . . . 143 145 . . . . . 265 . . . . . . a5 . . 145 148 . . . . 404 . . . . . . . . . . 148 149 . . . . . . . 175 . . . . . . . 149 150 . . . . . . . . . . . . . . 96 150 151 . . . . . . . . . . . . . a1 . 151 154 . . . 1104 . . . . . . . . . . . 154 156 . . . . . . . . . . . c0 . . . 156 161 . . . . . . . . . . . c5 . . . 161 162 . . . . . . . 200 . . . . . . . 162 163 . . 2203 . . . . . . . . . . . . 163 171 . . . . . 333 . . . . . . . . . 171 173 . . . . . . . 212 . . 125 . . . . 173 174 . . . . . . . . . . . . c6 . . 174 185 . . . . 505 . . . . . . . . . . 185 187 . . . . . . . . . . . . . c7 . 187 197 . . . . . . . . 197 . . . . . . 197 200 . . . . . . 310 . . . . . 104 . c8 200 202 . . . . . . . 244 . . . . . . . 202 206 . 21122 . . . . . . . . . . . . . 206 217 . 22001 . . . . . . . . . . . . . 217 221 . . . 1341 . . . . . . . . . . . 221 228 . . . . . 444 . . . . . . . . . 228 243 . . . . . . . 300 . . . . . . . 243 249 . . . . . . . . . . . . . 119 . 249 250 . . . . . . . . . . . . . . fa 250 251 . . . . . . 373 . . . . . . . . 251 256 100000000 . . . . . . . . . . . . . . 256 257 . . . . . . 401 . . . . . . . . 257 262 . . . . . . . . . 219 . . . . . 262 269 . . 10031 . . . . . . . . . . . . 269 274 . . . . . . . . . . . . . . 112 274 285 100011101 . . . . 555 . . . . . . . . . 285 303 . . . . . . . 366 . . . . . . . 303 305 . . . . . . . . . . 215 . . . . 305 324 . . . . . . . 400 . . . . . . . 324 329 . . . . . 650 . . . . . . . . . 329 342 . . . . . 666 . . . . . . . . . 342 346 . . . . . . . 424 . . 24a . . . . 346 400 . . . . . . 620 . . . . . 208 . . 400 401 . . . . . . . . . . . . . . 191 401 404 . . . . . . . 488 . . . . . . . 404 405 . . . . . . . 500 . . . . . . . 405 409 . . . . 1521 . . . . . . . . . 199 409 457 . . . . . . 711 . . . . . . . . 457 483 . . . 3413 . . . . . . . . . . . 483 486 . . . . . . . 600 . . . . . . . 486 512 1000000000 . . . . . . . . . . . . . . 512 519 . . . . . . . 636 . . . . . . . 519 524 . . . . . . . . . . . 314 . . . 524 526 . . . . 2234 . . . . . . . . . . 526 528 . . . . . . . . . . . . . . 210 528 529 . . . . . . . . . 441 . . . . . 529 542 . . . . . . . . . . . 329 . . . 542 545 . . . . . . . . . 456 . . . . . 545 548 . . . . . . . . . . . . . . 224 548 567 . . . . . . . 700 . . . . . . . 567 569 1000111001 . . . . . . . . . . . . . . 569 581 . . . . . . . . . . 405 . . . . 581 589 . . . . . 1501 . . . . . . . . . 589 600 . . . . . . . . . . . . 30c . . 600 610 . . . . . . . . . . 42a . . . . 610 647 . . . . . . . . . . . . 343 . . 647 648 . . . . . . . 800 . . . . . . . 648 677 . 221002 . . . . . . . . . . . . . 677 683 1010101011 . . . . . . . . . . . . . . 683 692 . . . . . . . 848 . . . . . . . 692 718 . . . . . . . . . . . . . 32d . 718 732 . . . . . . . 1003 . . . . . . . 732 742 . . . . . . . . 742 . . . . . . 742 805 . 1002211 . . . . . . . . . . . . . 805 822 . . . . . . . . . . . . . . 336 822 840 . 1011010 . . . . . . . . . . . . . 840 857 . . . . . . . 1152 . . . . . . . 857 893 . . . . . . 1575 . . . . . . . . 893 928 . . . . . . . . . . 654 . . . . 928 939 . . . . . . . . . . . 573 . . . 939 Base: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Count(<1000):14 12 10 20 13 18 20 25 8 13 24 21 15 11 16:) Some of the bases, as far as they go, have no pairs; that is to say elements that differ by 1. This is true of bases 4, 6, 10, 11, 14, 15, and 16. The opposite is true for complements, for example in base 13 we have the pair {1c,20}. It is interesting to note that in base 10, the 3rd Keith number is the 2nd Perfect number,28, and the 1st Keith number is half of that, 14. Values seem of little value here when we cross bases, as for example no Keith number in base 8 is the 2nd Perfect number. :smart: Quote
CraigD Posted February 27, 2008 Author Report Posted February 27, 2008 Mmmmm...It looks to me like the 11th term is 742 in the example, and that the first 3 terms are 7, 4, 2? What am I missing? :)You’ve missed nothing but another example of my typing and proofreading incompetence :shrug: I’ve fixed it now. Where I’m hoping to go in this thread is toward a rule for constructing Keith numbers in bases greater than 2. The rule in base 2 is trivially simple: “1 followed by 1 or more 0s”. Could there be a less simple rule for the other bases? Such a rule is also a proof of the “infinitely many” conjecture. Quote
Turtle Posted February 28, 2008 Report Posted February 28, 2008 You’ve missed nothing but another example of my typing and proofreading incompetence :doh: I’ve fixed it now. Where I’m hoping to go in this thread is toward a rule for constructing Keith numbers in bases greater than 2. The rule in base 2 is trivially simple: “1 followed by 1 or more 0s”. Could there be a less simple rule for the other bases? Such a rule is also a proof of the “infinitely many” conjecture. Roger the typo. To follow up, 731 is not Keith: {7 3 1 11 15 27 53 95 175 323 593 1091...} I suspect no such rule exists, but it's an interesting conjecture. The description you give on base 2 rule put me in mind of the similar base 2 katabataks triviality, wherein all values input to the function return 1, or if expressed as residues, 0. Looking at the list with katabatak glasses, I see no pattern in any of the bases to suggest a rule either. ;) Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.