UncleAl Posted July 1, 2009 Report Posted July 1, 2009 The Big Bang launched with an intense massed sector chiral pseudoscalar vacuum background. Its dilution powered cosmic inflation; the Weak interaction froze out left-handed; matter dominated antimatter as broken symmetry forced baryon number and other conservation violations during false vacuum decay. Biological homochirality was universally biased by residual chiral anisotropic vacuum background long thereafter. After all... quantized gravitation theories require supplementing Einstein-Hilbert action with a parity-violating Chern-Simons term ([0811.0181] Constraining effective quantum gravity with LISA). Naughty. This would overturn all physics. General Relativity loses a founding postulate, the Equivalence Principle, as left and right shoes fall divergently in Einstein's elevator, each shoe fit to a vacuum left foot. Chiral anisotropic vacuum plus Noether's theorem loses quantum mechanics' conservation of angular momentum in kind. Let's get a pair of shoes - macroscopically and chemically identical, opposite geometric parity atomic mass distributions - and find out. Identical anonymous points (atoms) self-similarly, periodically array in 3-space as 230 crystallographic space groups. 65 Sohncke space groups contain chiral mass configurations. 11 pairs of Sohncke space groups are themselves enantiomorphic, forcing opposite geometric parity (chirality in all directions) independent of contents. Three pairs of enantiomorphic Sohncke space groups contain no conflicting or racemic screw axes. They are our shoe boxes. Enantiomorphic space groups P3(1)21 and P3(2)21: Single crystal cultured quartz, right- and left-handed respectively. Quartz' atoms are densely packed, 0.01256 nm^3/atom. Would you like to overturn all physics for a footnote? Load an Eötvös balance The University of Washington Eot-Wash Group right click on picture "view image" See the 20 micron tungsten suspensory filament at the top.http://www.npl.washington.edu/eotwash/publications/pdf/schlamminger08.pdfhttp://www.npl.washington.edu/eotwash/publications/pdf/lowfrontier2.pdf with four solid single crystal test masses of right-handed quartz opposing four solid single crystal test masses of left-handed quartz. If there occurs a reproducible net output, if the Equivalence Principle has an empirical parity violation, if right and left shoes fall differently, then gravitation and quantum mechanics are falsified at their beginnings. No prior observation in any venue at any scale would be contradicted. Too much fun! Somebody should look. Quote
stereologist Posted July 1, 2009 Report Posted July 1, 2009 Word salad by Uncle Al the kiddies pal Quote
UncleAl Posted July 2, 2009 Author Report Posted July 2, 2009 OK, "sterelogist" you are on: indicate one statement posted by Uncle Al that is inconsistent with extant physical theory other than the results of a parity experiment itself. Uncle Al will expedite the basis for your snit with two reading lists. The short list: H. Mueller, et al., “Relativity tests by complementary rotating Michelson-Morley experiments”, Phys. Rev. Lett. 99, 050401(2007); [0706.2031] Relativity tests by complementary rotating Michelson-Morley experiments D. J. Champion, et al., "An Eccentric Binary Millisecond Pulsar in the Galactic Plane", [0805.2396] An Eccentric Binary Millisecond Pulsar in the Galactic Plane E.G. Adelberger, J.H. Gundlach, B.R. Heckel, S. Hoedl and S. Schlamminger,"Torsion balance experiments: a low-energy frontier of particle physics", Part. Nucl. Phys. 62, 102 (2009),http://www.npl.washington.edu/eotwash/publications/pdf/lowfrontier2.pdf;S. Schlamminger, K.-Y. Choi, T. A. Wagner, J. H. Gundlach, and E. G. Adelberger, "Test of the Equivalence Principle Using a Rotating Torsion Balance", Phys. Rev. Lett. 100, 041101 (2008), http://www.npl.washington.edu/eotwash/publications/pdf/schlamminger08.pdf; J.H. Gundlach,"Laboratory tests of gravity", New J. Phys. 7, 205 (2005),Laboratory tests of gravity N. Yunes, L. S. Finn, “Constraining effective quantum gravity with LISA”, [0811.0181] Constraining effective quantum gravity with LISA H. D. Flack, "Chiral and achiral crystal structures", Helv. Chim. Acta 86, 905 (2003),http://crystal.flack.ch/cacs.pdf K. Kihara, "An X-ray study of the temperature dependence of the quartz structure", Eur. J. Mineralogy 2, 63 (1990); A. F. Wright and M. S. Lehmann,,"The structure of quartz at 25 and 590 degrees C determined by neutron diffraction", J. Solid State Chem. 36, 371 (1981). M. More, G. Odou, J. Lefebvre, "Structure Determination of Benzil in its Two Phases", Acta Cryst. B43, 398 (1987). Å. Kvick, W. M. Canning, T. F. Koetzle and G. J. B. Williams, “An experimental study of the influence of temperature on a hydrogen-bonded system: the crystal structure of [gamma]-glycine at 83 K and 298 K by neutron diffraction”, Acta Crystallogr. B36, 115 (1980) The long list (you might start with #33): [1] E. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences,” Comm. Pure Appl. Math 13(1), 1 (1960). [2] T. D. Lee, C. N. Yang, “Question of Parity Conservation in Weak Interactions”, Phys. Rev. 104, 254 (1956). [3] C. R. Contaldi, J. Magueijo, L. Smolin, “Anomalous CMB Polarization and Gravitational Chirality”, Phys.Rev.Lett.101, 141101 (2008), arxiv:0806.3082v1. [4] A. Einstein, Jahrbuch der Radioaktivität u. Electronik 4, 411 (1907); The Collected Papers of Albert Einstein, Vol. 2 English translation, A. Beck, trans. (Princeton University Press: Princeton, NJ, 1989) p. 252. [5] S. Mercuri, “Fermions in the Ashtekar-Barbero connection formalism for arbitrary values of the Immirzi parameter”, Phys. Rev. D 73, 084016 (2006); M. Tsuda and T. Shirafuji, "Consistency of matter field equations in Ashtekar formulation", arxiv:gr-qc/9602022. [6] R. Aldrovandi, Tiago Gribl Lucas, J. G. Pereira, “Does a tensorial energy-momentum density for gravitation exist?”, arxiv:0812.0034. [7] R. Aldrovandi, J. G. Pereira, “Gravitation: in search of the missing torsion”, Ann. Fond. Louis de Broglie 32, 229 (2007), arxiv:0801.4148. [8]S. Schlamminger, K.-Y. Choi, T. A. Wagner, J. H. Gundlach, and E. G. Adelberger, "Test of the Equivalence Principle Using a Rotating Torsion Balance", Phys. Rev. Lett. 100, 041101 (2008). [9] C. M. Will, “The Confrontation between General Relativity and Experiment”, Living. Rev. Rel. 9, 3 2005; arxiv:gr-qc/0510072v2; T.W. Murphy, Jr., E.G. Adelberger, J.B.R. Battat, et al., “APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections”, arxiv:0710.0890v2.[10] B. R. Heckel, C. E. Cramer, T. S. Cook, E. G. Adelberger, S. Schlamminger, and U. Schmidt, "New CP-Violation and Preferred-Frame Tests with Polarized Electrons", Phys. Rev. Lett. 97, 021603 (2006); L-S. Hou, W-T. Ni, Y-C. M. Li , “Test of cosmic spatial isotropy for polarized electrons using a rotatable torsion balance”, Phys. Rev. Lett. 90, 201101 (2003); R. C. Ritter, C. E. Goldblum, W-T Ni, G. T. Gillies, C. C. Speake, “Experimental test of equivalence principle with polarized masses”, Phys. Rev. D 42, 977 (1990).[11] D. J. Champion, et al., “An Eccentric Binary Millisecond Pulsar in the Galactic Plane”, arxiv.org:0805.2396.[12] L. D. Barron, "Optical activity and time reversal", J. Mol. Phys. 43, 1395 (1981).[13] M. Petitjean, "Chirality and symmetry measures: A transdisciplinary review", Entropy 5, 271 (2003).[14] J. Jerphagnon, D. S. Chemla, "Optical activity of crystals", J. Chem. Phys. 65(4), 1522 (1976); A. M. Glazer, K. Stadnicka, "On the origin of optical activity in crystal structures", J. Appl. Cryst. 19, 108 (1986).[15] T. D. Crawford, M. C. Tam, M. L. Abrams, "The Current State of Ab Initio Calculations of Optical Rotation and Electronic Circular Dichroism Spectra", J. Phys. Chem. A 111(48), 12057 (2007); K. Wiberg, Y-G Wang, S. Wilson, P. Vaccaro, J. Cheeseman, "Sum-over-States Calculation of the Specific Rotations of Some Substituted Oxiranes, Chloropropionitrile, Ethane, and Norbornenone", J. Phys. Chem. A 110(51), 13995 (2006).[16] J. Etxebarria, C. L. Folcia, and J. Ortega, "Origin of the optical activity of silver thiogallate," Appl. Cryst. 33, 126 (2000).[17] G. Szivessey and C. Münster, "Über die Prüfung der Gitteroptik bei aktiven Kristallen", Ann. Phys. (Leipzig) 20, 703 (1934).[18] István Hargittai, Magdolna Hargittai, Symmetry through the eyes of a chemist, 2nd Edition (Springer, 1995), pp. 75-78.[19] R.M. Pagni, R. N. Compton, “Asymmetric Synthesis of Optically Active Sodium Chlorate and Bromate Crystals”, Crystal Growth & Design 2(4), 249 (2002).[20] L. Keszthelyi, “Parity-violating energy difference between enantiomers: recent developments”, Mendeleev Commun. 13(3), 129 (2003); M. Quack, “How Important is Parity Violation for Molecular and Biomolecular Chirality?”, Angew. Chem. Int. Ed. 41(24), 4618 (2002).[21] P. G. Mezey, "Rules on chiral and achiral molecular transformations", J. Math. Chem. 17, 185 (1995).[22] D. Yogev-Einot and D. Avnir, "Quantitative Symmetry and Chirality of the Molecular Building Blocks of Quartz", Chem. Mater. 15, 464 (2003). [23] M. Petitjean, "On the root mean square quantitative chirality and quantitative symmetry measures", J. Math. Phys. 40, 4587 (1999). petitjeanmichel.free.fr/itoweb.petitjean.freeware.html#QCM[24] M. Nakazaki, H. Chikamatsu, M. Taniguchi, “Horse Liver Alcohol Dehydrogenase (HLADH) Mediated Chemicoenzymatic Asymmetric Synthesis of (+)-Twistane from cis-Decalin-2,7-dione”, Chem. Lett. 11(11), 1761 (1982); J. Autschbach, Department of Chemistry, State University of New York/Buffalo, private communication; A. M. Schwartz, M. Petitjean, “[6.6]Chiralane: A remarkably symmetric chiral molecule” Symmetry: Culture and Science (), (2009).[25] BigCHI programmed by John W. Hooper, MazePath Software, Farmington Hills, MI; Anne Marie Merritt, VMware Inc., Palo Alto, CA; and Anthony J. Lapen , Harvard Apparatus, Holliston, MA. CHIpir programmed by John Edward Scott, Daedalus Solutions, London.[26] Personal communication, Prof. Penelope Smith, Mathematics Dept., Lehigh University.[27] H. D. Flack, "Chiral and achiral crystal structures", Helv. Chim. Acta 86, 905 (2003).[28] M. Petitjean, “Chiral mixtures”, J. Math. Phys. 43, 4147 (2002).[29] K. Kihara, "An X-ray study of the temperature dependence of the quartz structure", Eur. J. Mineralogy 2, 63 (1990).[30] A. F. Wright and M. S. Lehmann,,"The structure of quartz at 25 and 590 degrees C determined by neutron diffraction", J. Solid State Chem. 36, 371 (1981).[31] M. More, G. Odou, J. Lefebvre, "Structure Determination of Benzil in its Two Phases", Acta Cryst. B 43, 398 (1987).[32] Planetary and Lunar Coordinates 2001-2020, HM Nautical Almanac Office and Nautical Almanac Office of the United States Naval Observatory, 2001. ISBN: 0-943396-68-9.[33] A. M. Schwartz, “Affine vs. Metric Gravitation Parity Test”, Abstract D9.006, Bull. Am. Phys. Soc., 49[2], 54 (2004).[34] P. Auvray, F. Genet, “Affinement de la structure cristalline du cinabre a-HgS”, Bull Soc. Franc. Mineral. Cristall. 96, 218 (1973).[35] C. Adenis, V. Langer, O. Lindqvist," Reinvestigation of the structure of tellurium", Acta Cryst. C 45, 941 (1989).[36] J.H. Gundlach,“Laboratory tests of gravity”, New J. Phys. 7 205 (2005); R. Newman, "Prospects for terrestrial equivalence principle tests with a cryogenic torsion pendulum," Class. Quantum Grav. 18, 2407 (2001).[37] N. Yunes, L. S. Finn, “Constraining effective quantum gravity with LISA,” arXiv:0811.0181v1. Quote
Erasmus00 Posted July 2, 2009 Report Posted July 2, 2009 Chiral anisotropic vacuum plus Noether's theorem loses quantum mechanics' conservation of angular momentum in kind Not true, chirality should not be confused with helicity. QCD is already believed to have a broken chiral symmetry, and nature already treats right and left handed fermions differently. Galapagos 1 Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.