Jump to content
Science Forums

Recommended Posts

Posted

Hello. I have some questions on this assignment, I'm wondering if I could get some help:

Determine whether the integral converges and, if so, evaluate the integral.

 

1) [math] \int_{e}^{\infty} \frac{dx}{xlnx} [/math]

 

I integrate and get [math] \lim_{b \to \infty} \int_{e}^{b} \frac{dx}{xlnx} = \lim_{ b \to \infty} [ \frac{ln(xlnx)}{lnx}]_{e}^{b} [/math] ?

 

2) [math] \int_{1}^{4} \frac{dx}{x^2 - 4} [/math]

 

It has discontinuity at x = 2 and x = -2 so I evaluate [math] \int_{1}^{2} \frac{dx}{x^2 - 4} \int_{2}^{4} \frac{dx}{x^2 - 4} [/math]

 

I integrate and get [math] \frac{-1}{4} \lim_{c \to \infty} \int_{1}^{c} \frac{1}{x+2} - \frac{1}{x-2} dx [/math]

 

I sub in and get ln0?

 

3) [math]\int_{e}^{\infty} \frac{dx}{(lnx)^2}[/math]

 

Does this integrate into [math] \lim_{b \to \infty} [\frac {-x}{lnx}]_{e}^{b} [/math] ?

 

4) [math] \int_{2}^{\infty} \frac {dx}{x^2 + sinx} [/math]

 

I don't know how to integrate this

  • 1 month later...
Posted

For (1) I got :

 

[math]\int \frac{1}{x\ln(x)}dx\underbrace{=}_{y=\ln(x),dy=dx/x}\int\frac{dy}{y}=\ln(y)=\ln(\ln(x))[/math]

 

However, I don't know if it gives the same as your expression.

 

(2) doesn't it give sthg. proto. :

 

[math]\ln\left(\frac{x-2}{x+2}\right)[/math] ?

 

(3) I derived :

 

[math]\left(\frac{x}{\ln(x)}\right)'=\frac{\ln(x)-1}{\ln(x)^2}[/math]

 

which looks near to the result, but it seems not to be the same.

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...