zeion Posted March 17, 2010 Report Posted March 17, 2010 Hello. I have some questions on this assignment, I'm wondering if I could get some help:Determine whether the integral converges and, if so, evaluate the integral. 1) [math] \int_{e}^{\infty} \frac{dx}{xlnx} [/math] I integrate and get [math] \lim_{b \to \infty} \int_{e}^{b} \frac{dx}{xlnx} = \lim_{ b \to \infty} [ \frac{ln(xlnx)}{lnx}]_{e}^{b} [/math] ? 2) [math] \int_{1}^{4} \frac{dx}{x^2 - 4} [/math] It has discontinuity at x = 2 and x = -2 so I evaluate [math] \int_{1}^{2} \frac{dx}{x^2 - 4} \int_{2}^{4} \frac{dx}{x^2 - 4} [/math] I integrate and get [math] \frac{-1}{4} \lim_{c \to \infty} \int_{1}^{c} \frac{1}{x+2} - \frac{1}{x-2} dx [/math] I sub in and get ln0? 3) [math]\int_{e}^{\infty} \frac{dx}{(lnx)^2}[/math] Does this integrate into [math] \lim_{b \to \infty} [\frac {-x}{lnx}]_{e}^{b} [/math] ? 4) [math] \int_{2}^{\infty} \frac {dx}{x^2 + sinx} [/math] I don't know how to integrate this Quote
A23 Posted May 2, 2010 Report Posted May 2, 2010 For (1) I got : [math]\int \frac{1}{x\ln(x)}dx\underbrace{=}_{y=\ln(x),dy=dx/x}\int\frac{dy}{y}=\ln(y)=\ln(\ln(x))[/math] However, I don't know if it gives the same as your expression. (2) doesn't it give sthg. proto. : [math]\ln\left(\frac{x-2}{x+2}\right)[/math] ? (3) I derived : [math]\left(\frac{x}{\ln(x)}\right)'=\frac{\ln(x)-1}{\ln(x)^2}[/math] which looks near to the result, but it seems not to be the same. Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.