Rade Posted May 27, 2010 Report Posted May 27, 2010 A publication in 2002 by D.L.Hotson (in two parts) provides a novel interpretation of the negative energy solution of the Dirac Equation. I would like this thread to be a forum to discuss the thoughts of Hotson. Part 1: http://openseti.org/Docs/HotsonPart1.pdfPart 2: http://openseti.org/Docs/HotsonPart2.pdf this added 06/01/2010 Part 3: http://blog.hasslberger.com/docs/HotsonIE86.pdf Quote
coldcreation Posted May 27, 2010 Report Posted May 27, 2010 A publication in 2002 by D.L.Hotson (in two parts) provides a novel interpretation of the negative energy solution of the Dirac Equation. I would like this thread to be a forum to discuss the thoughts of Hotson. Part 1: http://openseti.org/Docs/HotsonPart1.pdfPart 2: http://openseti.org/Docs/HotsonPart2.pdf That was a fun read. Thanks for that Rade. The problem I see is ironic. D.L. Hotson criticizes the standard model and the big bang theory for using an entire zoo full of parameters (fudge factors), yet seems to adhere to the idea of an undetectable sea of negative energy, a virtual 'medium,' not unlike the aether shown to be inexistent by the Michelson-Morley experiment. In addition to that, Hotson argues for a set of unobservable spin dimensions. But these can be perceived as no less imaginary than any other fudge factor used in the standard model or big bang theory (e.g., dark energy, dark matter). The irony is compounded by Hotson's view that anything we postulate to exist must, in principle, be observable directly (or indirectly, perhaps). The idea that a potential theory of everything can be derived from Dirac's equations would have stood on less rickety footing had those ad hoc features not been required. Other details regarding a universal BEC, and consciousness interacting with time, are rather sketchy, shady even. Or maybe I should re-read those parts of the text. CC Quote
Rade Posted May 27, 2010 Author Report Posted May 27, 2010 The problem I see is ironic. D.L. Hotson criticizes the standard model and the big bang theory for using an entire zoo full of parameters (fudge factors), yet seems to adhere to the idea of an undetectable sea of negative energy, a virtual 'medium,' not unlike the aether shown to be inexistent by the Michelson-Morley experiment.I did a search for the word "undetectable" in the documents. In all cases the word is prefix by the word "virtual". But I do not see that Hotson finds that a sea of negative energy being undetectable to be a fudge factor. There is nothing to fudge, given that the reality of the negative energy sea is a direct result of taking the + and - terms for E (energy) in the Dirac Equation seriously. That is, the negative energy sea exists, the same way an "off pixel" exists in a computer screen---how can we detect the "off pixel" until it is turned "on" ? That is the point of his argument, is it not ? -- that taking the Dirac Equation seriously does not require any fudge factors. Here is what he says in the Part 2 document about undetectable negative energy: "The sea of negative-energy one-dimensional epos, vibrating in imaginary directions, forms a virtually undetectable background, like “off” pixels in a perfect computer screen. And like a three-way light switch, they “turn on” in three stages, each stage vital to our reality. Epos vibrating in one “real” dimension form the electromagnetic field. Vibrating in two “real” dimensions, they carry angular momentum around at the speed of light: the “photon.” And vibrating in three “real” dimensions, they form matter." Concerning the aether, Hotson discusses this in many places. What he claims is that Lorentz died too soon (1928), before Dirac published his equation. Lorentz had a concept of a type of electromagnetic aether that agrees completely with the Dirac Equation and that shows how the results of the Michelson-Morley experiment have been misinterpreted. Here is what Hotson says about this topic, in Part 1 document: "Lorentz’s electromagnetic aether (Lorentz, 1904, 1909) answered all of the other objections to a carrier of light, including the results of the Michelson-Morley experiment" "One of the tragedies of science is Lorentz’s death in 1928, just as Dirac’s equation was formulated, as Lorentz surely would have recognized the negative-energy sea as responsible for his electromagnetic aether." I have not read the 1904 & 1909 papers by Lorentz about his concept of an electromagnetic aether, so I take it that Hotson has read them and finds they agree with predictions of the Dirac Equation. So, if Lorentz was incorrect about his aether concept--how so, and why does his concept conflict with Dirac Equation--I think these are the interesting questions being raised by Hotson--correct ? In addition to that, Hotson argues for a set of unobservable spin dimensions. But these can be perceived as no less imaginary than any other fudge factor used in the standard model or big bang theory (e.g., dark energy, dark matter). The irony is compounded by Hotson's view that anything we postulate to exist must, in principle, be observable directly (or indirectly, perhaps).I did a search of both documents and found no place where Hotson uses the term "unobservable" as a type of fudge factor. This seems to be a comment related to his use of the term "undetectable" discussed above--but again--saying that the Dirac Equation predicts 6 dimensions that are "imaginary" in superposition with 4 that are "real" does not I think mean the "imaginary" does not exist--correct ? I cannot find that Hotson would not at least view the outcomes of the imaginary spin dimensions to be indirectly observable ? Thanks CC for your interest. Quote
Don Blazys Posted May 29, 2010 Report Posted May 29, 2010 Just finished part 1. That is indeed a very informative and thought provoking article. Hotson's contention that the Dirac equation was never properly interpretedreally does seem to make a lot more sense than todays "standard model". On to part 2. Don. Quote
Erasmus00 Posted May 30, 2010 Report Posted May 30, 2010 Honestly, these papers read like someone who has cobbled together an account of physics from (at best) partly understood ideas. He cobbled his ideas of how the world should work and wove them together with his half-baked understanding of physics and got it published in infinite energy because in his world such a thing is possible. His understanding of Dirac's electron sea/hole theory is very poor- the point of Dirac's theory is that positrons are empty holes in the sea of electrons (like the hole's in a semi-conductor). When an electron meets a positron, it is meeting a lower energy state that is unoccupied, and so it falls in, emitting a photon. This is exactly like creation/annihilation (the formalism is the identical). An identical formalism can give you no different quantitative result, and the sea of electrons cannot be extended to bosons. For bosons, there is no pauli exclusion, so everything would fall into the lowest state- except in this case, there isn't one, the states go all the way down to negative infinity. Further, his understanding of classical physics is also nonsense- changing Franklin's sign convention on the electron will not change what counts as positive and negative energy, etc. I haven't read the second paper, I can only assume its more of the first. Quote
Rade Posted May 31, 2010 Author Report Posted May 31, 2010 ....the sea of electrons cannot be extended to bosons. For bosons, there is no pauli exclusion, so everything would fall into the lowest state- except in this case, there isn't one, the states go all the way down to negative infinity. Thanks for your comments, but I think some are too harsh. Your comment above is correct as understood by Dirac when he proposed his "hole theory". But, Hotson has a section in Part 1 document concerning how a different interpretation of the negative energy sea in terms of the Bose-Einstein Condensate (BEC) would allow for the Dirac sea to be extended to bosons. Here are some quotes from Hotson in the Part 1 document: "What becomes clear from all this is that the negative energy sea of bosons (epos) called for by the equations must exist in the form of a BEC. According to the equations and everything we know, our reality is surrounded by and immersed in a vast, all pervasive Bose-Einstein Condensate." "Bell’s proof and the experimental facts of electromagnetism and gravitation require a non-local reality. Dirac’s equation, in requiring a universal BEC, provides just that." "Of course, the BEC wasn’t well described in 1934, so it is no mystery why Dirac didn’t see that this is what his equation calls for. Only in the light of more recent findings is it evident that Dirac’s “sea” must be a BEC. For, of course, it fills the crucial needs of Dirac’s sea—it is “full,” so that no positive energy particle can “fall in” unless it first loses all its positive energy, and then only if a balancing antiparticle similarly divests itself. Further, it has no “mass,” hence no inertia or gravitational interaction, so it is virtually undetectable." Also, physicists have made attempts to apply the Dirac sea concept directly to show how it does apply to bosons--here is one effort I found: http://arxiv.org/PS_cache/hep-th/pdf/9808/9808108v1.pdf It would help if someone that discussed this issue with Dirac could provide some input to this issue. My point is that Dirac did not pass away that long ago, and perhaps someone reading this forum may have discussed with him this issue about bosons and Dirac sea ? Further, his understanding of classical physics is also nonsense- changing Franklin's sign convention on the electron will not change what counts as positive and negative energy, etc. You miss the point he was trying to make. Hotson does not say that Franklin's sign choice to call his electron e- would change energy dynamics. He is only making a statement that, if Franklin had given his electron the e+ sign, that action may have changed human perception and opinion of the Dirac sea. That is, if e+ is the Franklin electron sign then the Dirac sea would have the perception of "positive energy", and a "positive" as a perception of some thing is often more easy for the human mind to accept as a truth statement than a "negative". Quote
quantumtopology Posted May 31, 2010 Report Posted May 31, 2010 I also found it to be an interesting read, specially the first 10-12 first pages of part 1 where it builds a good case against the Standard Model, then it goes on to state his alternative view and there is some wild stuff there , mainly in part 2 with the beta decay and his neutron theory where everything seems to dip a little in numerology. In the final paragraphs the author himself acknowledges this when he says that after all his is only a model and might as well have many details wrong.So what I get out of this is the interesting idea of taking seriously the Dirac equation and its implications with respect to negative energy,and certain points about his view on bosons and the Bose-Einstein condensate.One question, wouldn't this model be one in wich negative and positive energy cancel each other out leaving a vanishing net energy density of the universe=0? Quote
Qfwfq Posted May 31, 2010 Report Posted May 31, 2010 That author is very confused about the topics and also quite ignorant of their history. The Dirac sea was the first idea for interpreting the solutions of the equation, a quite brilliant idea too which mathematically works perfectly. It is not at all disproved by the M&M experiment, in fact it came later, in the context of SR and the nexus with the aether is quite arbitrary; however it bears an obvious ontological snag and a bit less obviously leads to a conundrum that I once pointed out somewhere on these boards. The Dirac sea is not at all necessary, in RQFT it is replaced by PCT, Spin and Statistics, and All That. :phones: Quote
coldcreation Posted May 31, 2010 Report Posted May 31, 2010 It's kind of cool, that for a meager price of $31.50 ($3.50 or 10% off) you can save yourself the trouble of having to write- and others the trouble of having to sift through, two big PDF files. :phones: CC Quote
Erasmus00 Posted May 31, 2010 Report Posted May 31, 2010 Most of the specific claims made in the article about the Dirac equation aren't correct. Your comment above is correct as understood by Dirac when he proposed his "hole theory". But, Hotson has a section in Part 1 document concerning how a different interpretation of the negative energy sea in terms of the Bose-Einstein Condensate (BEC) would allow for the Dirac sea to be extended to bosons. No, he doesn't. The fundamental difficulty is this- electrons stack up (i.e. pauli exclusion principal prevents two electrons from being in the same state). So if we fill all the negative states, no other electron can enter enter a negative energy state. Bosons do not have such an exclusion principal. Even if there is a boson in every negative state, a boson can lower its energy and join them. Further, bosons can bose condense, which means that they all start to fall into the lowest energy state possible. Unfortunately, in the "dirac sea' there is no lowest state, so the bosons continue dropping energy forever, releasing an infinite amount of energy. Hotson does not discuss this problem, and has no resolution to it. My point is that Dirac did not pass away that long ago, and perhaps someone reading this forum may have discussed with him this issue about bosons and Dirac sea ? Dirac moved away from the electron/hole model when it became clear that other interpretations allowed more progress (such as QED). You miss the point he was trying to make. Hotson does not say that Franklin's sign choice to call his electron e- would change energy dynamics. He is only making a statement that, if Franklin had given his electron the e+ sign, that action may have changed human perception and opinion of the Dirac sea. That is, if e+ is the Franklin electron sign then the Dirac sea would have the perception of "positive energy", and a "positive" as a perception of some thing is often more easy for the human mind to accept as a truth statement than a "negative". And my point is that flipping the signs on the charges will NOT flip the signs of the dirac sea, it wll not flip the signs of binding energies, etc. Binding energies are relative energies- they are negative if you choose the convention that two unbound particles have 0 energy. Obviously bound particles have less energy then free particles, so the energy goes negative. HOWEVER, this is not absolute energy (the energy measured by relativity, and hence the energy in Dirac's equation). Now, two particles far apart have an energy 2mc^2, and two bound particles have slightly less, but that energy is still positive. This has nothing to do with the sign of the charge. The problem of interpretation is with a negative absolute energy. Quote
Rade Posted June 1, 2010 Author Report Posted June 1, 2010 Erasmus00...thank you for your comments. I understand that the Hotson papers make exceptional claims that may well be false, and he makes it clear at the end of the Part 2 document that he recognizes that some of his ideas may be incorrect. Also, while I agree with you that Dirac hole theory initially was not applied to bosons---such is not the case at this time. There are published attempts to identify the ground state for bosons within a Dirac sea hole theory, so they do not need to drop forever releasing infinite energy. So, while Hotson has not discussed this--others have. I provided one paper in my last post--here is another: 68-81 === Here are some personal comments I have and I welcome any comments, pro or con. I posted this thread because I think Hotson does a great service to raise awareness of the reality of both positive and negative energy present in quantum entities. Hotson makes a valid point that it is the current thinking by some (many ?) physicists that a Dirac sea with negative energy does not exist. Clearly this is false. Heisenberg and others were incorrect to hand wave away the negative energy solution of the Dirac Equation and Einstein Equation E = + - mc^2. How many physics textbooks discuss this ? How many students realize that both a (+) and (-) solution to the Einstein Equation exists and that one solution refers to matter and the other to antimatter ? Antimatter is an important topic today, much more so than at time of Heisenberg. Even string theory predicts that a portion of any string mass must be from a minimum amount of vibration as allowed by quantum uncertainty--the zero-point energy....but....the contribution of the zero-point energy to the mass of the string is a negative energy ! Negative energy is predicted by all known ways to explain quantum entities. I find the issue of negative energy as it relates to antimatter to be especially important now that experiment has documented many more types of antimatter than the positive electron (e + positron). We now have the anti-proton, anti-helium 3, anti-hydrogen 3, anti-deuterium--all have been created at various labs. The first three are fermions, and anti-deuterium is a boson. I find that in the same way the Dirac Sea relates to the interaction of the e- and e+ to help explain spin and magnetic moment, the Dirac Equation could be extended to interactions between proton and anti-proton (two fermions), helium 3 and anti-helium 3 (two fermions), hydrogen 3 and anti-hydrogen 3 (two fermions), deuterium and anti-deuterium (two bosons). Consider also how the concept of a Dirac Sea of negative energy could be applied to possible interactions of mass asymmetrical fermions and anti-bosons (or anti-fermions and matter bosons) now that we know they exist, such as the interaction of helium 3 (fermion)+ anti-deuterium (boson) ! What does current Standard Model say about this possible interaction ?--clearly it cannot be a complete annihilation because the two particles are not mirror opposite. How would this reaction relate to Dirac equation if the interaction was between unified quark bags, and not at the level of individual quarks ? Quote
Erasmus00 Posted June 1, 2010 Report Posted June 1, 2010 Erasmus00...thank you for your comments. I understand that the Hotson papers make exceptional claims that may well be false His factual statements about solutions to the dirac equation are false to start (I contend Hotson does not understand the Dirac equation), which makes his conjectures most likely false. There are published attempts to identify the ground state for bosons within a Dirac sea hole theory, so they do not need to drop forever releasing infinite energy. So, while Hotson has not discussed this--others have. I provided one paper in my last post--here is another: 68-81 Have you read these papers? They make it clear their correspondence to a hole theory is entirely formal, the vacuum require putting -1 particle in each negative energy state. Surely you don't think adding a negative particle number is anything more than a formal operation? Hotson makes a valid point that it is the current thinking by some (many ?) physicists that a Dirac sea with negative energy does not exist. Clearly this is false. Heisenberg and others were incorrect to hand wave away the negative energy solution of the Dirac Equation and Einstein Equation E = + - mc^2. How many physics textbooks discuss this ? Every textbook that discusses the Dirac equation has a discussion of the negative energies, and a discussion of a quantization method that avoids the need for negative energies and is easily capable of extending to bosons. The hole theory does not extend easily, and so is used as an intuitive starting point, but eventually dropped. Also, extensions that avoid the sea of negative particles can easily be shown to be entirely equivalent to those that don't- i.e. removing the negative sea doesn't change any numberss but makes the the theory much easier to interpret. [qupte]How many students realize that both a (+) and (-) solution to the Einstein Equation exists and that one solution refers to matter and the other to antimatter ? Any reasonable student of the subject, much attention is given to this idea in the context of the Dirac equation. the Dirac Equation could be extended to interactions between proton and anti-proton (two fermions), helium 3 and anti-helium 3 (two fermions), hydrogen 3 and anti-hydrogen 3 (two fermions), deuterium and anti-deuterium (two bosons). This extension is tricky- the dirac equation requires a g factor of exactly 2. Nucleons are composite entities and so have g factors quite different than 2. You can extend the equation, but it becomes much more approximate. Also, bosons will never follow a dirac equation (which has spin built in), but instead a Klein-Gordon equation. Quote
Qfwfq Posted June 1, 2010 Report Posted June 1, 2010 It's kind of cool, that for a meager price of $31.50 ($3.50 or 10% off) you can save yourself the trouble of having to write- and others the trouble of having to sift through, two big PDF files.What's even cooler is that the topic can be found in many books that treat particle physics much more correctly than that author's paper. I just chose the one that has the most relevant matter in its very title. I'm not expecting everybody around here to rush out and buy it, 'specially as it ain't the most introductive one. That author is trying to dig a hole in water. Also, while I agree with you that Dirac hole theory initially was not applied to bosons---such is not the case at this time. There are published attempts to identify the ground state for bosons within a Dirac sea hole theory, so they do not need to drop forever releasing infinite energy. So, while Hotson has not discussed this--others have.As has been said, it should be regarded as mathematical rather than physical. Quantum Field Theory is the way to go; the energy symmetry of the equations translates into time reversal symmetry and there is no boson-antiboson distinction. This extension is tricky- the dirac equation requires a g factor of exactly 2. Nucleons are composite entities and so have g factors quite different than 2. You can extend the equation, but it becomes much more approximate.Sometimes you also say things that surprise me. Magnetic moment doesn't come into the Dirac equation, so how does it require the exact g-factor value? In my studies, the Dirac equation was good for all free fermions and Klein-Gordon for all free bosons. They are used as the free terms in the complete Lagrangian for any process where electric charge, and hance also magnetic moment, come in with the EM coupling term. Quote
Rade Posted June 1, 2010 Author Report Posted June 1, 2010 Quantum Field Theory is the way to go; the energy symmetry of the equations translates into time reversal symmetry and there is no boson-antiboson distinction.Thanks for all of your useful comments. I understand that the Dirac negative energy hole concept can be "quantized away" using other quantum models. But, if we are to take the position that quantum field theory is the way to go, then, is it not true that we must take seriously those that publish new ways to bring the Dirac Sea negative energy view into quantum field theory--such as this 2007 publication: http://arxiv.org/abs/quant-ph/0701085A Dirac sea pilot-wave model for quantum field theory Here, the authors bring in the pilot-wave model of quantum theory of David Bohm and relate it to Dirac Equation (negative energy) and quantum field theory. It is only for fermions, but at the end of the paper they discuss how their approach could be extended to bosons. This is a topic Hotson discusses--taking the Dirac equation to mean (in reality) that negative energy is present in all quantum entities and that this negative energy allows Bohm's interpretation of quantum theory concerning pilot-waves (with "information" moving faster than speed of light) to be taken seriously. I does appear that when the Dirac equation is taken to mean that negative energy is a useful concept, then the Bohm pilot wave interpretation of the Bell experiment is seen in a new light (not that it is made any more valid, only that the explanation is clarified). Does anyone else see this connection ? For me, rather then mud the waters, I find that this "interpretation" of quantum theory (presence of negative energy via E = + - mc^2, combined with negative energy holes of Dirac Sea, combined with "information" from General Relativity {mass & energy + spacetime} linked via pilot-waves moving > c) lets us ask questions about interactions between different types of matter and antimatter fermions and bosons in new ways (see my previous post). == I appreciate the interest by all that have posted to this thread. It does appear that Hotson receives a much more negative review than positive up to this point in the discussion. Are there any that see any value to what Hotson claims ?-- and please give specifics. == Edit: Well, this was fast--it appears one answer to my question is available--plus a response by Hotson--his Part III. So, I will also add Hotson Part III to the OP: Hotson Part III (with introduction): http://blog.hasslberger.com/docs/HotsonIE86.pdf == Another review of Hotson that has some positive comments: http://www.dpedtech.com/HotsonRev.pdf Quote
Erasmus00 Posted June 1, 2010 Report Posted June 1, 2010 Sometimes you also say things that surprise me. Magnetic moment doesn't come into the Dirac equation, so how does it require the exact g-factor value? In my studies, the Dirac equation was good for all free fermions and Klein-Gordon for all free bosons. They are used as the free terms in the complete Lagrangian for any process where electric charge, and hance also magnetic moment, come in with the EM coupling term. Generally, the Dirac equation refers to [math] i\gamma^\mu (\partial_\mu -i q A_\mu) \psi -m\psi = 0 [/math] With a free particle being the special case where the potential is 0. This is the analog of the Schroedinger equation, and why you often hear that the Dirac equation is exactly solvable in the case of hydrogen. Anyway, this is the way to couple a dirac particle to an EM field. This structure predicts that for any spin 1/2 particle g is exactly 2. Hence, extending the dirac equation to a composite charged object like a proton (with g not equal to 2) is at best an approximation. Quote
Qfwfq Posted June 3, 2010 Report Posted June 3, 2010 Here, the authors bring in the pilot-wave model of quantum theory of David Bohm and relate it to Dirac Equation (negative energy) and quantum field theory.Goodness! That explains a lot! I hadn't read those .pdf docs as far as references to the Bohm pilot wave, which runs into its own difficulies anyway. Generally, the Dirac equation refers to [math] i\gamma^\mu (\partial_\mu -i q A_\mu) \psi -m\psi = 0 [/math] With a free particle being the special case where the potential is 0.Well, if you mean the Dirac equation that way, for a fixed EM field and no other interaction terms, then I see what you meant. I do however recall it as being, more conventionally, meant as in my avatar with no "special status" for that interaction term; what you write strikes me a specific alteration for a specific purpose. I'll try to remember and have a look in my battered old copy of Itzykson-Zuber when I get back home. After posting, I had thought a bit further and supposed you might have meant simply that it's easier to treat a process involving hadrons by considering them as single fermions but this requires some tweaking for the g factor. This certainly makes more sense than replacing every hadron with its bunch of constituents and, yes, I'd perfectly agree with it. Quote
Super Polymath Posted June 15, 2017 Report Posted June 15, 2017 (edited) There's really no such thing as negative energy: It has been shown by the LIGO that the gravitational effects of a black hole merger millions or billions of light years away can decrease the earth's distance from the sun by the width of a hydrogen atom. By that notion, the closest thing to negative energy is the evaporation of a black hole, which would increase earth's distance from the sun by the width of a hydrogen atom. This is the very mechanism for which we get the Casimir Effect. Edited June 15, 2017 by Super Polymath Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.