mishin05 Posted December 18, 2010 Report Posted December 18, 2010 0--------[math]x[/math]----------A-----------[math]C[/math]------------B>[math]t[/math] 0->[math]t[/math] - Axis of abscisses, {A} - Mobile point, therefore [math]x=|OA|[/math] - a variable, [math]|AB|=C=const.[/math] ' the Structural analysis ' approves, that record of the mathematical analysis [math]\displaystyle\int dx=x+C[/math] makes no sense, since in it actually three are laid various integral: 1. If [math]\displaystyle t=x+C[/math], [math]\displaystyle\frac{dt}{dt} = \frac {d (x+C)}{d (x+C)}=1.[/math] [math]|OB|=\displaystyle\int \limits _{0}^{t}dt=t = \int\limits_{0}^{x+C}d(x+C) = \int\limits_{0}^{x+C}dt=\int d(x+C)=x+C.[/math] 2. Special case [math]\displaystyle t=x+C[/math] at [math]\displaystyle C=0 [/math] [math]|OA|=|OB|=\displaystyle\frac{dt}{dt} = \frac{dx}{dx}=1.[/math] [math]\displaystyle\int\limits_{0}^{t}dt[/math] [math] (t=x) [/math] [math]\displaystyle = \int \limits_{0}^{x}dx= \int dx=x.[/math] 3. [math]\displaystyle\frac{dt}{d(t-C)}=\frac{dt}{dx} = \frac{d (x+C)}{dx} = \frac {dx}{dx} =1.[/math] [math]|OA|=\displaystyle\int\limits_{0}^{t-C} dt= \int \limits_{0}^{x}dt=x[/math]. [math]\displaystyle\int dx\not=x+C[/math], because [math]\displaystyle\int dx=|OA|[/math], [math]\displaystyle x+C=|OB|[/math]. The uncertain integral is limited by an integration variable. The certain integral is limited by two values of a variable of integration. Geometrical interpretation of formula [math]\displaystyle U\cdot V=\int UdV+\int VdU[/math] for the elementary functions shows that both uncertain integrals are limited by arguments [math]V[/math] and [math]U[/math], therefore sum [math]\displaystyle\int UdV+\int VdU[/math] is equal to the area of rectangle [math]\displaystyle U\cdot V.[/math] Error of an official science that on the basis: [math] \frac {dt} {dx} = \frac {dx} {dx} =1 [/math] the conclusion that [math] x=t [/math], because actually [math] t=x+C [/math] has been drawn.It only one of many errors of an official science. I develop "the Structural analysis" which cleans all errors! Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.