RGClark Posted March 31, 2012 Report Posted March 31, 2012 (edited) [This is in reference to an argument attached below that the Ariane 5 core stage can be SSTO with 3 Vulcain engines.] The most important accomplishment of SpaceX may turn out to be they showed insuch stark terms the savings possible when launchers are privately financed: SpaceX Might Be Able To Teach NASA A Lesson.May 23, 2011By Frank Morring, Jr.Washington“I think one would want to understand in some detail . . . why would it bebetween four and 10 times more expensive for NASA to do this, especially at atime when one of the issues facing NASA is how to develop the heavy-liftlaunch vehicle within the budget profile that the committee has given it,”Chyba says.He cites an analysis contained in NASA’s report to Congress on the market forcommercial crew and cargo services to LEO that found it would cost NASAbetween $1.7 billion and $4 billion to do the same Falcon-9 development thatcost SpaceX $390 million. In its analysis, which contained no estimates forthe future cost of commercial transportation services to the InternationalSpace Station (ISS) beyond those already under contract, NASA says it had“verified” those SpaceX cost figures.For comparison, agency experts used the NASA-Air Force Cost Model—“aparametric cost-estimating tool with a historical database of over 130 NASAand Air Force spaceflight hardware projects”—to generate estimates of what itwould cost the civil space agency to match the SpaceX accomplishment. Usingthe “traditional NASA approach,” the agency analysts found the cost would be$4 billion. That would drop to $1.7 billion with different assumptionsrepresentative of “a more commercial development approach,” NASA says.http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=awst&id=news/awst/2011/05/23/AW_05_23_2011_p36-324881.xml The SpaceX experience of developing a launcher in the Falcon 9 at 1/10th thecost of a government financed one also holds for the crew capsule developmentcosts since the Dragon capsule cost about $300 million to develop while theOrion costs several billion and still counting. So it can't be said this costsaving is just due to the Falcon 9 being, so far, unmanned. Speaking about Orion and billions of dollars, I read an article about plansto use the Orion on the Ariane 5 to get a European manned spaceflightcapability: French govt study backs Orion Ariane 5 launch.By Rob Coppingeron January 8, 2010 4:45 PM http://www.flightglobal.com/blogs/hyperbola/2010/01/french.html This would cost several billion dollars to man-rate the Ariane 5. I have tobelieve the solid rocket boosters, which can not be shut down when started,play a significant role in that high cost. The article mentions also thecore stage would have to be strengthened. But such strengthening is based onit having to support a 20 mT Orion capsule and a 20 mT upper stage whichwouldn't be used with a much smaller capsule such as the Dragon, at a dry massof about 4 mT. Note also that quite likely an even smaller manned capsule could be designedat about a 2 mT dry mass to carry a 3 man crew, which given its half sizecompared to the Dragon, might cost in the range of only $150 million todevelop as privately financed. It's hard to imagine that private investmentcould not be found to finance such a capsule development when it could lead toa manned European space capability. In regards to the costs of a privately financed SSTO version of the Arianelauncher we might make a comparison to the Falcon 9. It cost about $300million to develop and this includes both the structure and engines, theengines making up the largest share of the development cost of a launcher. Butfor the SSTO Ariane both engine and structure are already developed and it'sonly a single stage instead of the two stages of the Falcon 9. You would havethe development cost of adding 2 additional engines and of the new avionics,but again I have to be believe the development cost would once again be lessthan the SpaceX development cost of the Falcon 9 if privately financed. I also read that the ESA is attempting to decide whether to upgrade theAriane 5 or move to a Next Generation Launcher(NGL): Ariane rocket aims to pick up the pace.25 June 2011 Last updated at 06:39 ET http://www.bbc.co.uk/news/science-environment-13911901 Thu, 9 February, 2012France, Germany To Establish Working Group To Resolve Ariane 5 Differences.By Peter B. de Seldinghttp://www.spacenews.com/policy/120209-france-germany-resolve-ariane5-differences.html If the NGL is chosen then a quite expensive new large engine developmentwould have to be made, and the launcher might not enter service until 2025. Incontrast the SSTO-Ariane, given that the engine and stage already exist, aprototype probably could be ready within 1 to 2 years, and moreover by using asecond stage it could also be used to launch the medium sized payloads. So the SSTO-Ariane would solve the twin problems at low cost of providingEurope with a manned spaceflight capability and giving it a lower cost mediumlift capability. Bob Clark ======================================================================Newsgroups: sci.space.policy, sci.astro, sci.physics, sci.space.history, rec.arts.sf.scienceFrom: Robert Clark Date: Thu, 8 Sep 2011 13:56:20 -0700 (PDT)Subject: Re: A kerosene-fueled X-33 as a single stage to orbit vehicle. I saw this discussed on a space oriented forum: WSJ: Europe Ends Independent Pursuit of Manned Space Travel. "LE BOURGET, France—Europe appears to have abandoned all hope of independently pursuing human space exploration, even as the region's politicians and aerospace industry leaders complain about shrinking U.S. commitment to various space ventures. "After years of sitting on the fence regarding a separate, pan- European manned space program, comments by senior government and industry officials at the Paris Air Show here underscore that budget pressures and other shifting priorities have effectively killed that longtime dream." http://www.orbiter-forum.com/showthread.php?t=23006 In this post I discussed getting a SSTO by replacing the Vulcain engine on the Ariane 5 core with a SSME: Newsgroups: sci.space.policy, sci.astro, sci.physics, sci.space.history From: Robert Clark Date: Wed, 23 Feb 2011 10:14:42 -0800 (PST) Subject: Re: Some proposals for low cost heavy lift launchers. http://groups.google.com/group/sci.physics/msg/e1736e7586cc269f?hl=en However, in point of fact Europe can produce a manned launch vehicle from currently *existing*, European components. This will consist of the Ariane 5 and three Vulcain engines. The calculations below use the Ariane 5 generic "G" version. You might need to add another Vulcain for the larger evolution "E" version of the Ariane 5 core. In a following post I'll also show that the Hermes spaceplane also can become a SSTO by filling the entire fuselage aft of the cockpit with hydrocarbon propellant. The impetus for trying the calculation for a Ariane 5 core based SSTO using Vulcains instead of the SSME was from a report by SpaceX that you could get the same performance from a planned heavy lift first stage using a lower performance Merlin 2 compared to the high performance RS-84 engine. The reason was the lower Isp of the Merlin was made up for by its lower weight. THIS IS A VERY IMPORTANT FACT BECAUSE WHAT IT MEANS IS THAT YOU DON'T NEED THE HIGH PERFORMANCE ENGINES TO GET THE SSTO. YOU CAN USE ENGINES OF LOWER CHAMBER PRESSURE AND SIMPLER COMBUSTION CYCLES, SUCH AS THE VULCAIN WITH A CA. 100 BAR COMBUSTION PRESSURE AND A GAS GENERATOR CYCLE. THIS MEANS THE ENGINES ARE CHEAPER, EASIER TO MAKE REUSABLE, REQUIRE LESS ROUTINE MAINTENANCE, AND CAN LAST FOR MANY RESTARTS. In the discussion of the Ariane/Vulcain SSTO below, I note you can get a prototype, test vehicle quite quickly since the components are already existing. To improve the payload though you would want to use altitude compensation on the Vulcains. In a following post I'll discuss some methods of altitude compensation. In regards to achieving this at low cost, I think the most important accomplishment of SpaceX might turn out to be that they showed in stark terms that privately financed spacecraft, both launchers and crew capsules, can be accomplished at 1/10th the developmental cost of government financed ones. Imagine a manned, reusable orbital launcher, for example, instead of costing, say, $3 billion, only costing $300 million to develop. Here's how you can get an all European manned SSTO using the Ariane 5 core stage but with Vulcain engines this time. Note that this is one that can be produced from currently existing components, aside from the capsule, so at least an unmanned prototype vehicle can be manufactured and tested in the short term and at lowered development cost. We'll use three Vulcain 2's instead of the 1 normally used with the Ariane 5 core stage. There are varying specifications given on the Vulcain 2 depending on the source. I'll use the Astronautix site: Vulcain 2. http://www.astronautix.com/engines/vulcain2.htm From the sea level thrust given there, using three Vulcain 2's will give us one engine out capability. The weight is given as 1,800 kg. So adding on two will take the dry mass from 12 mT to 15.6 mT. To calculate the delta-V achieved I'll use the idea again to just use the vacuum Isp, but adding the loss due to back pressure onto the delta-V required for orbit, as I discussed previously. However, here for hydrogen fuel which has higher gravity loss, I'll use a higher required delta-V of 9,400 m/s when you add on the back pressure loss. With the vacuum Isp given for the Vulcain 2 of 434 s, we get a payload of 3.8 mT: 434*9.8ln(1+158/(15.6+3.8)) = 9,412 m/s. Note this is just using the standard nozzle Isp for the Vulcain, no altitude compensation. So this could be tested, like, tomorrow. However, for a SSTO you definitely want to use altitude compensation. Using engine performance programs such as ProPEP we can calculate that using long nozzles, you can get a vacuum Isp of 470 s for this engine. As a point of comparison of how high an Isp you can get even with a low chamber pressure engine as long as you have a long nozzle, or equivalent, note that the RL10-B2 with a ca. 250 to 1 area ratio, and only a ca. 40 bar chamber pressure, gets a 465 s vacuum Isp. So we'll assume we can get a comparable Isp by using altitude compensation. This allows us to get payload of 8 mT: 470*9.8ln(1+158/(15.6+8) = 9,400 m/s. This allows us to add a Dragon-sized capsule and also the reentry and landing systems to make it reusable. Bob Clark ====================================================================== Edited March 31, 2012 by Robert Clark Quote
RGClark Posted August 3, 2012 Author Report Posted August 3, 2012 I've been arguing that SSTO's are actually easy because how to achieve them is perfectly obvious: use the most weight optimized stages and most Isp efficient engines at the same time, i.e., optimize both components of the rocket equation. But I've recently found it's even easier than that! It turns out you don't even need the engines to be of particularly high efficiency. SpaceX is moving rapidly towards testing its Grasshopper scaled-down version of a reusable Falcon 9 first stage: Reusable rocket prototype almost ready for first liftoff. BY STEPHEN CLARK SPACEFLIGHT NOW Posted: July 9, 2012 http://www.spaceflightnow.com/news/n1207/10grasshopper/ SpaceX deserves kudos for achieving a highly weight optimized Falcon 9 first stage at a 20 to 1 mass ratio. However, the Merlin 1C engine has an Isp no better than the engines we had in the early sixties at 304 s, and the Merlin 1D is only slightly better on the Isp scale at 311 s. This is well below the highest efficiency kerosene engines (Russian) we have now whose Isp's are in the 330's. So I thought that closed the door on the Falcon 9 first stage being SSTO. However, I was surprised when I did the calculation that because of the Merlin 1D's lower weight, the Falcon 9 first stage could indeed be SSTO. For the calculation we'll need the F9 dry mass and propellant mass. I'll use the Falcon 9 specifications estimated by GW Johnson, a former rocket engineer, now math professor: WEDNESDAY, DECEMBER 14, 2011 Reusability in Launch Rockets. http://exrocketman.blogspot.com/2011...h-rockets.html The first stage propellant load is given as 553,000 lbs, 250,000 kg, and the dry weight as 30,000 lbs, 13,600 kg. I'll actually calculate the payload for the first stage of the new version of the Falcon 9, version 1.1. The Falcon Heavy will use this version's first stage for its core stage and side boosters. SpaceX expects the Falcon 9 v1.1 to be ready by the end of the year. Elon Musk has said version 1.1 will be about 50% longer: Q&A with SpaceX founder and chief designer Elon Musk. BY STEPHEN CLARK SPACEFLIGHT NOW Posted: May 18, 2012 http://www.spaceflightnow.com/falcon9/003/120518musk/ I'll assume this is coming from 50% larger tanks. This puts the propellant load now at 375,000 kg. Interestingly SpaceX says the side boosters on the Falcon Heavy will have a 30 to 1 mass ratio. This improvement is probably coming from the fact it is using the lighter Merlin 1D engines, and because scaling up a rocket actually improves your mass ratio, and also not having to support the weight of an upper stage and heavy payload means it can be made lighter. So I'll assume for this SSTO version of the Falcon 9 v1.1 the mass ratio is 30 to 1, which makes the dry mass 13 mT. To estimate the payload I'll use the payload estimation program of Dr. John Schilling: Launch Vehicle Performance Calculator. http://www.silverbirdastronautics.com/LVperform.html It actually gives a range of likely values of the payload. But I've found the midpoint of the range it specifies is a reasonably accurate estimate to the actual payload for known rockets. Input the vacuum values for the thrust in kilonewtons and Isp in seconds. The program takes into account the sea level loss. SpaceX gives the Merlin 1D vacuum thrust as 161,000 lbs and vacuum Isp as 311 s: FALCON 9 OVERVIEW. http://www.spacex.com/falcon9.php For the 9 Merlins this is a thrust of 9*161,000lb*4.46N/lb = 6,460 kN. Use the default altitude of 185 km and select the Cape Canaveral launch site, with a 28.5 degree orbital inclination to match the Cape's latitude. Input the dry mass of 13,000 kg and propellant mass of 375,000 kg. The other options I selected are indicated here: Then it gives an estimated 7,564 kg payload mass: ===================================== Launch Vehicle: User-Defined Launch Vehicle Launch Site: Cape Canaveral / KSC Destination Orbit: 185 x 185 km, 28 deg Estimated Payload: 7564 kg 95% Confidence Interval: 3766 - 12191 kg ===================================== This may be enough to launch the Dragon capsule, depending on the mas of the Launch Abort System(LAS). Bob Clark Quote
CraigD Posted August 4, 2012 Report Posted August 4, 2012 Launch Vehicle Performance Calculator. http://www.silverbirdastronautics.com/LVperform.html :thumbs_up That’s a neat little calculator, though I wish its “methodology used” page showed its actual code. I enjoy writing simple simulators myself, and posted the code for a few in the space forum years ago, before my and others interest and enthusiasm in writing a really useful, more complicated one fizzled out. Though I expect there are lots of tried and true simulators practically or fully in the public domain, there’s no substitute, IMHO, for writing your own. :) I’m a bit wary of accepting its calculations showing SSTO-capability using SpaceX Falcon rockets, as if this were truly the case, I’d expect SpaceX, not a company shy of making grand promises, and one I’m sure has excellent high detail simulators, would have made it known years or more ago. Until actually running a detailed simulation, I have to remain skeptical – not of the possibility of SSTO, but of how easy calculators like this suggest it is. SpaceX is moving rapidly towards testing its Grasshopper scaled-down version of a reusable Falcon 9 first stage: Reusable rocket prototype almost ready for first liftoff. BY STEPHEN CLARK SPACEFLIGHT NOW Posted: July 9, 2012 http://www.spaceflightnow.com/news/n1207/10grasshopper/I’ve been enthused since first reading of SpaceX’s ambitions to make the currently disposable Dragon reusable via the oh so cool sounding means of landing them with their own main engines, and am delighted to see serious work being done toward that. I’m wary, though, of statements like these, from the article:"If one can figure out how to effectively reuse the rockets just like an airplane, the cost of access to space will be reduced by as much as a factor of a hundred," [spaceX CEO and founder Elon] Musk said. "A fully reusable vehicle has never been done before. That really is the fundamental breakthrough that is needed to revolutionize access to space."This “dramatically reduce cost through reusability” argument seems pretty much the same as the one made in the 1970s in promotion of the STS (Space Shuttle, or as it was often promoted as “space truck” system), which, with the exception of a single component, its engineless external fuel tank, was a fully reusable system, yet proved to be more expensive than many disposable systems, because of the great cost of reconditioning its reusable hardware after each use. The analogy of an airplane to a rocket can be a deceptive one, in greatest part because airplane engines and other components are designed for durability, at the expense of greatest power/mass ratios. A typical jet aircraft engine need be overhauled every 3000 to 5000 hours, vs. (using the Shuttle as an example) every 8 to 10 minutes for rocket engines. Though the reduced cost through reusability argument is intuitively appealing, precisely because of our experience with airplanes, cars, and other vehicles with very durable engines and other parts. High Isp rocket motors are machines of a quite different sort. Like any decent space fan, a SSTO vehicle as cheap and reliable as the car in my driveway (or plane in my hanger, if I was one of the many folk fortunate enough to have one) is among my fondest dreams. But I’ve learned to beware of intuitively appealing mantras like “just make it reusable, like an airplane,” even when the person saying them is someone like the uber-cool Elon Musk. I think that if reusable SSTO (or multi-reusable stage to orbit) is ever to really reduce the dramatically cost of spaceflight, more attention needs to be given to making rocket motors so durable that they can be reused without significant reconditioning work. As I see things now, informed by the experience of the disappointingly costly STS program, it’s little, if at all, cheaper to reuse a rocket than to build a new one from scratch. Quote
RGClark Posted August 27, 2012 Author Report Posted August 27, 2012 :thumbs_up That’s a neat little calculator, though I wish its “methodology used” page showed its actual code. I enjoy writing simple simulators myself, and posted the code for a few in the space forum years ago, before my and others interest and enthusiasm in writing a really useful, more complicated one fizzled out. Though I expect there are lots of tried and true simulators practically or fully in the public domain, there’s no substitute, IMHO, for writing your own. :)I’m a bit wary of accepting its calculations showing SSTO-capability using SpaceX Falcon rockets, as if this were truly the case, I’d expect SpaceX, not a company shy of making grand promises, and one I’m sure has excellent high detail simulators, would have made it known years or more ago.Until actually running a detailed simulation, I have to remain skeptical – not of the possibility of SSTO, but of how easy calculators like this suggest it is.... Thanks for the informative response. It's all theoretical until Spacex fields the Falcon 9 v1.1 later this year and the Falcon Heavy including those side boosters next year. If the Falcon 9 v1.1 first stage mass ratio is anywhere close to 30 to 1, as SpaceX claims the FH side boosters will be, then that will raise the questions about whether it can be SSTO. If it can be, then that raises the possibility that by using higher efficiency engines such as the NK-33 or RD-180 we can get an economic SSTO even with reusability. Bob Clark Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.