Jump to content
Science Forums

Recommended Posts

Posted

Hello! This is actually from a homework problem: Show that if you add a total derivative to the Lagrangian density \( L \to L + \partial_\mu X^\mu \), the energy momentum tensor changes as \( T^{\mu\nu} \to T^{\mu\nu}+\partial_\alpha B^{\alpha\mu\nu}\) with \( B^{\alpha\mu\nu}=-B^{\mu\alpha\nu}\). The Lagrangian can depend on higher order derivatives of the field.

 

Attempted Solution:

 

So we have \( T_{\mu\nu}=\frac{\partial L}{\partial(\partial_\mu \phi)}\partial_\nu \phi-g_{\mu\nu}L\), where \( \phi\) is the field that the Lagrangian depends on. If we do the given change on the Lagrangian, the change in \( T_{\mu\nu}\) would be \( \frac{\partial (\partial_\alpha X^\alpha)}{\partial(\partial_\mu \phi)}\partial_\nu \phi-g_{\mu\nu}\partial_\alpha X^\alpha =\partial_\alpha \frac{\partial  X^\alpha}{\partial(\partial_\mu \phi)}\partial_\nu \phi-g_{\mu\nu}\partial_\alpha X^\alpha\). From here I thought of using this: \( g_{\mu\nu}\partial_\alpha X^\alpha=g_{\mu\nu}\partial_\alpha \phi \frac{\partial X^\alpha}{\partial \phi}\) But I don't really know what to do from here. Mainly I don't know how to get rid of that \(g_{\mu\nu}\). Also I am not sure if what I did so far is correct. Can someone help me?

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...