Mercedes Benzene Posted May 13, 2007 Report Posted May 13, 2007 Just testing out some Latex since I've never really used it before! [math]t=\frac {\bar{x}-\mu}{s/sqrt{n} [/math] [math] 7.77 \pm 1.984\left(\frac{2.28956}{\sqrt{100}}\right) [/math] [math] (7.316,8.224) [/math] Quote
DougF Posted May 31, 2007 Report Posted May 31, 2007 f(x)=int_{-infty}^xfrac{(e^{-t^2})}{sqrt{pi^x}}dt Quote
DougF Posted May 31, 2007 Report Posted May 31, 2007 f(x)=int_{-infty}^xfrac{(e^{-t^2})}{sqrt{pi^x}}dt[tag]f(x)=int_{-infty}^xfrac{(e^{-t^2})}{sqrt{pi^x}}dt[/tag] Quote
DougF Posted May 31, 2007 Report Posted May 31, 2007 [tag]f(x)=int_{-infty}^xfrac{(e^{-t^2})}{sqrt{pi^x}}dt[/tag][tag] f(x)=int_{-infty}^xfrac{(e^{-t^2})}{sqrt{pi^x}}dt [/tag] I think i'm missing somethe here? Quote
Mercedes Benzene Posted May 31, 2007 Report Posted May 31, 2007 You don't use [tag], you use THE tags latex and /latex Quote
DougF Posted May 31, 2007 Report Posted May 31, 2007 Thanks I'll try one more time! :eek_big: [math] f(x)=\int_{-\infty}^x\frac{(e^{-t^2})}{\sqrt{\pi^x}}dt [/math] Thanks: I think I've got it now. :doh: RED Quote
alexander Posted September 10, 2007 Author Report Posted September 10, 2007 [math]f(x)=\int_{-\infty}^x\frac{(e^{-t^2})}{\sqrt{\pi^x}}dt[/math] Quote
CraigD Posted October 7, 2007 Report Posted October 7, 2007 A Feynman diagram, without the pretty wavy line... [math] setlength{unitlength}{1mm} begin{picture}(0, 0) put(10, 20){ makebox(3,0)[cc]{$gamma$} vector(1,0){10} } put(24, 20){ vector(2,1){10} } put(24, 20){ vector(2,-1){10} } put(35, 25){ makebox(3,0)[cc]{$e^-$} vector(2,-1){10} } put(35, 15){ makebox(3,0)[cc]{$e^+$} vector(2,1){10} } put(50, 20){ makebox(3,0)[cc]{$gamma$} vector(1,0){10} } end{picture} [/math] Quote
tierradelfuego Posted October 10, 2007 Report Posted October 10, 2007 [math]-1 = e^{\pi i}[/math] Quote
alexander Posted October 10, 2007 Author Report Posted October 10, 2007 please use the the math tags.... instead of [math]-1=e^{\Pi i}[/math][math]-1=e^{\pi i}[/math] use [math]-1=e^{\Pi i}[/math][math]-1=e^{\pi i}[/math] distinct advantages of the second over the first are:you can now click on the expression to see the codeyou can notice better rendering and space managementyou can now do a load more with this then you were able to with latex... you can do stuff like this:[math]I(z) = \sin( \frac{\pi}{2} z^2 ) \sum_{n=0}^\infty\frac{ (-1)^n \pi^{2n} }{1 \cdot 3\cdots (4n + 1) } z^{4n + 1}-\cos( \frac{\pi}{2} z^2 ) \sum_{n=0}^\infty\frac{ (-1)^n \pi^{2n + 1} }{1 \cdot 3\cdots (4n + 3) } z^{4n + 3}[/math] [math]\setlength{\unitlength}{1mm}\begin{picture}(60, 40){\put(30, 20){\vector(1, 0){30}}}{\put(30, 20){\vector(4, 1){20}}}{\put(30, 20){\vector(3, 1){25}}}{\put(30, 20){\vector(2, 1){30}}}{\put(30, 20){\vector(1, 2){10}}}\thicklines\put(30, 20){\vector(-4, 1){30}}\put(30, 20){\vector(-1, 4){5}}\thinlines\put(30, 20){\vector(-1, -1){5}}\put(30, 20){\vector(-1, -4){5}}\end{picture}[/math] i gotta go find if i can enable the pst-plot module.... that would be interesting Quote
snoopy Posted December 18, 2007 Report Posted December 18, 2007 testing [math]f(x)=\int_{-\infty}^x\frac{(e^{-t^2})}{\sqrt{\pi^x}}dt[/math] Ah I see.... said the blind man Quote
snoopy Posted December 21, 2007 Report Posted December 21, 2007 [math]\fontsize=10\setlength{\unitlength}{1mm}\begin{picture}(60,40)\end{picture}[/math] [math]y=mx+c[/math] Quote
pigeon_soup Posted June 12, 2008 Report Posted June 12, 2008 frac{dy}{dy} = fract {9}{32} (x^2 -4x) Quote
pigeon_soup Posted June 12, 2008 Report Posted June 12, 2008 frac{dy}{dy} = fract {9}{32} (x^2 -4x) Quote
CraigD Posted June 12, 2008 Report Posted June 12, 2008 [math]\frac{dy}{dy} = \fract {9}{32} (x^2 -4x)[/math] doesn't parse correctly due to the unrecognized element "fract":[math]\frac{dy}{dy} = \fract {9}{32} (x^2 -4x)[/math] [math]\frac{dy}{dy} = \frac{9}{32} (x^2 -4x)[/math] renders as:[math]\frac{dy}{dy} = \frac{9}{32} (x^2 -4x)[/math] There's also an older tag, [math], but it renders less nicely, and supports less LaTeX than the [math] tag. Using LaTeX in your posts shows attention to detail, which will win the admiration of your peers! :) Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.