Pyrotex Posted May 16, 2007 Report Posted May 16, 2007 Using about the algorithm Pyro describes... Still, I don’t think this is what the target sequences inventor intends – it doesn’t quite seem to satisfy the “any 5th grader could do it” criterion....I agree. I've given up on that approach. Quote
max4236 Posted May 18, 2007 Report Posted May 18, 2007 1 1 2 3 2 3 3 4 3 4 5 4 5 4 5 5 6 5 6 5 6 1 1 2 3 2 3 3 4 3 4 5 4 5 4 5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 p=# of primes used in sum s, x=product of the primes p s | x ->1,2,4,8,15,30,50,100,98,375.. 1 0 1(not p.)| 1 1 2=2 | 2 =2 2 4=2+2 | 2*2 =4 3 6=2+2+2 | 2*2*2 =8 2 8=5+3 | 5*3 =15 3 10=5+3+2 | 5*3*2 =30 3 12=5+5+2 | 5*5*2 =50 4 14=5+5+2+2 | 5*5*2*2=100 3 16=11+3+2 | 11*3*2 =66 or 16=7+7+2 7*7*2 =98 <-? 4 18=11+3+2+2 | 11*3*2*2=132 or 7+7+2+2 7*7*2*2=196 or 7+5+3+3 7*5*3*3=315 or 5+5+5+3 5*5*5*3=375 <-?? 5 20=11+3+2+2+2 . . . ack.. ------------------------ 14 (4) 7 3 2 2 84 5 5 2 2 100<- 100>84>45 5 3 3 3 45 12 (3) 7 3 2 42 5 5 2 50<- 50>42 Quote
anto Posted May 18, 2007 Author Report Posted May 18, 2007 I actually tied that method and a smiliar one using prime numbers, none worked B). So 66 is not the right anwer, I don't know about 98 though. Quote
Pyrotex Posted May 18, 2007 Report Posted May 18, 2007 I LIKE it!!!!!!!!!!!!!!!!!Tha's what I'm talking about!!!!!!!!!!! Quote
max4236 Posted March 1, 2015 Report Posted March 1, 2015 (edited) pattern of triangle numbers? ((n+1)n/2): 1 3 6 *** 28 * 45 ** 78 *** 136 153 171 190 *** 276 * 325 ** 406 *** 528 561 595 630 *** 780 * 861 ** 990 *** 1176 1225 1275 1326 *** 1540 * 1653 ** 1830 *** 2080 (###*** #*#**#***# ?) social media is based in binary: tri# 128 64 32 16 8 4 2 1 1 0 0 0 0 0 0 0 1 64 3 0 0 0 0 0 0 1 1 32 6 0 0 0 0 0 1 1 0 16 28 0 0 0 1 1 1 0 0 8 45 0 0 1 0 1 1 0 1 4 78 0 1 0 0 1 1 1 0 2 136 1 0 0 0 1 0 0 0 1 ------------------------------------------------------------ 1 2 4 8 15 30 50 100 maybe this is next: tri# 512 256 128 64 32 16 8 4 2 1 153 0 0 1 0 0 1 1 0 0 1 64 171 0 0 1 0 1 0 1 0 1 1 32 190 0 0 1 0 1 1 1 1 1 0 16 276 0 1 0 0 0 1 0 1 0 0 8 325 0 1 0 1 0 0 0 1 0 1 4 406 0 1 1 0 0 1 0 1 1 0 2 528 1 0 0 0 0 1 0 0 0 0 1 ------------------------------------------------------------------------ 1 14 114 4 48 91 112 30 50 100 (1<150) 1 2 4 8 15 30 50 100 1 14 114 4 48 91 112 30 50 100 1 126 14 3 54 80 119 15 30 50 100 1 126 14 18 96 100 55 36 112 30 50 100 ... 1,2,4,8,15,30,50,100, 1,14,114,4,48,91,112,30,100, 1,126,14,3,54,80,119,15,.... Edited February 9, 2016 by max4236 Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.